Участник:Миг/Различные типы колбочек

Материал из свободной русской энциклопедии «Традиция»
Перейти к: навигация, поиск
Рис. 13. Типы вариантов работы фоторецепторов колбочек и палочек[1]

Различные типы колбочек — фоторецепторы сетчатки содержат фотопигменты - опсины, и в зависимости от вида и структуры пигмента опсина их молекулы максимально чувствительны к длинным длинам волны света (красному цвету), средним длинам волны света (зеленому цвету) или коротким длинам волны света (синему цвету). Откуда, колбочки с различной чувствительностью к спектральным лучам света в зонах (S, M., L — синяя, зелёная, красная) (см. рис. 13) в зависимсти от длины волны и последовательностью троп возможности прохождения в мозг, безусловно, основа цветного восприятия окружающей среды и создания нашего визуального оптического изображения.

Уже только в силу морфологических отличий, описанных выше, два основных типа фоторецептора, палочек и колбочек, которые существуют в позвоночной сетчатке. Палочки - фоторецепторы, которые содержат зрительный пигмент - родопсин, чувствительный к синему-зеленому цвету с пиковой чувствительностью, равной приблизительно длине волны света 500 нм. Палочки - очень чувствительные фоторецепторы и используются для видения при темно-тусклых условиях ночью. Колбочки содержат пигменты - опсины, в зависимости от вида и структуры опсина молекулы максимально чувствительны к длинным длинам волны света (красному цвету), средним длинам волны света (зеленому цвету) или коротким длинам волны света (синему цвету). Колбочки с различной чувствительностью (см. рис. 13) от длины волны и последовательностью троп возможности прохождения сигнала в мозг, конечно, основа цветного восприятия окружающей среды и создания нашего визуального оптического изображения. С точки зрения морфологии строения все колбочки одинаковые, все они содержат мембрану в виде конуса, в отличиеот палочек (форма мембраны цилиндр и с сечением в 1,5-2мкм). Хотя колбочки в зависимости от места расположения и связям с другими клетками сетчатки отличаются эквидистантно размерами за счёт разной длины мембраны. Например, у синих колбочек-S мембрана имеет более длинную форму острия. Главным отличием колбочек является наличие в мембранах фотопигмента опсины, которые в зависимости от принятого луча света и оппонентно выделяемого сигнала видоизменяются. (Способны реагировать на основные лучи спектра - красные+зелёные, синие+жёлтые, чёрные+белые согласно принципу оппонентного отбора наиболее яркого луча). При этом с учётом Ретиномоторной реакции фоторецепторов доказано, что палочки работают в зоне с лучами света с пиковой 498нм длиной волны и менее 498нм, в зоне, когда имеет место сумеречное или ночное освещение, когда палочки как бы открываются, когда красные и зелёные лучи вообще исчезают и уступают более силным эненргетически фотонам синих и ультрафиолетовых лучей. В этой связи и их форма мембраны создана только ждя синих лучей, у которых диаметр поперечного сечения луча равен 1,5-2мкм, равный диаметру цилиндра палочек.

Рис. 14a Спектры фоторецепторов в видимом диапазоне [2]

Три различных механизма колбочки могут быть обнаружены в поведенческом, психофизическом и физиологическом испытании. Эти механизмы - основа так называемого трехцветного зрения, которое имеет большинство людей. Если имеются только один или два зрительных пигмента у колбочки, зрение является монохроматическим или двуцветным.

Млекопитающие, относящиеся к дихроматам, имеют в сетчатке как палочки, так и колбочки, которые чувствительны к только средневолновому (M) и коротковолновому (S) диапазону (двухроматизм). Многие приматы, люди, ряд птиц, рептилий и рыб - трихроматики и тетрахроматики, а некоторые виды - даже пентахроматики).

В этой связи длинные, средние и короткие длины волн колбочек долго демонстрировались, чтобы существовать в человеческой сетчатке фотометрическими, психофизическимии молекулярными биологическими методами: (красные) L-колбочки, как известно, являются максимально чувствительными к длинам волны, достигающим максимума в 564нм, М. колбочки (зеленые) в 533нм и Булочки (S-синие) в 437 нм соответственно (см. спектры на рис. 14a) (обзор Gouras, 1984).

Нормальное человеческое цветное видение зависит от трех способов восприятия и трансдукции цветных лучей колбочки. Это добавляет дополнительное измерение, чтобы «покрасить» видение для двуцветных млекопитающих, создавая красноту и зеленых, а не только длинной длиной волны (красная) и короткой длины волны (синий). Чтобы сделать это, природа раскалывает систему длинной волны в две подобных системы с немного различной спектральной чувствительностью с относительно подобным opsins (рис. 14b). Колбочка «opsin» является самым чувствительным к желто-зеленому и колбочка в других условиях поглощения лучей света — к желто-красному. Это раскалывает самую яркую и желтую часть видимого спектра на две цветные полосы, одну — на зеленый цвет и другую — на красноту. Эта красно-зеленая система цветов работает параллельно с системой в условиях синего-желтой системы цветов.

Рис. 14b показывает тонкое различие в молекулярной структуре красных и зеленых фотопигментов опсинов любой колбочки по сравнению с пигментом родопсином палочки (Nathans и др., 1986).

Рис. 14b Молекулярная структура трех человеческих пигментов конуса[3]
Рис. 15 Жировые капельки колбочек черепахи[4]
Рис. 16 Разновидности одинаковых колбочек в зависимости от поглощённых лучей света и палочки черепахи[5]

Для понимания цветного зрения и как цветное визуальное сообщение (оптическое изображение) обработано в сетчатке, необходимо понять и начать с морфологического строения фоторецепторов. Например, с точки зрения морфологической мембраны колбочек имеют форму конуса независимо от различий в габаритах колбочек. Колбочки расположенные в разных местах сетчатки отличаются габаритами. Так имеется три (или больше) разновидностей колбочки, и таким образом только тогда они могут быть идентифицированы с любыми цветными определенными связями, которые они имеют, то есть их связи с биполярной, горизонтальной клеткой и, наконец, с клеткой нервного узла сетчатки. К счастью, определенные позвоночные разновидности животных имеют отчетливо различные разновидности морфологии колбочки в их сетчатках, и недавно стало возможным коррелировать эти морфологические особенности со спектральной чувствительностью в разных участках спектра). Теперь мы можем отличить колбочки, чувствительные к коротким, средним и длинным длинам волн в сетчатках небольшого количества рыб, лягушек, птиц, и рептилий (черепахи), основанные на отличных морфологических различиях. Сетчатки черепахи например покрасили нефтяные капельки в их различных спектральных типах колбочек!, которые идентифицируют их скорее с готовностью воспринимать свои цвета (диапазоны волн) (см. ниже, и обзоры Kolb и Lipetz, 1991; Ammermьller и Kolb, 1996). Тем не менее, каждая колбочка морфологически отличается друг от друга размерами сечений и длины мембраны с целью различной возможности расположиться в своих разных зонах сетчатки. Например, в зоне жёлтого пятна, где расположена основная масса колбочек с плотной упаковкой их размеры отличаются от колбочек, расположенных среди палочек с большими расстояниями между собой и имеют другие размеры. Однако все они морфологически содержат одинаковые клетки с одинаковой эквидистантной конфигурацией, но с разными габаритами. В любом случае колбочки все имеют конусную мембрану в отличие от палочек, имеющие цилиндрическую мембрану.

Сетчатки приматов и человека все еще содержат типы колбочки, которые выглядят по существу так же одинаково морфологически, но здесь одновременно с последними анатомическими методами исследования мы начинаем видеть по, крайней мере, что различие между коротким конусом ампллитуды длины волны и двумя более длинными конусами длины волны (т.е. коротковолновые, синие лучи дают наименьший кружок нерезкости, потому для мембраны колбочки в месте захвата синего луча требуется меньшая площадь — это «остриё» мембраны). Специализированные гистохимические методы (Марк и Sperling, 1977), исследования умелого подбора краски (DeMonasterio и др., 1981) или использование антител, определенных для визуальных пигментов (Szel и др., 1988), позволили провести идентификацию колбочки, наиболее относящихся к разновидностям млекопитающих. В антителах сетчатки примата противоположные визуальные пигменты окрашивают внешние доли L/M-колбочек вместе или Булочек-S-колбочек только. Это значит, что колбочка воспринявшая, или выделившая синий луч света восприняла его острием мембраны с выделением фотопигмента опсина, чувствительного к синему лучу света.

Рис. 17[6]
Рис. 17. Мозаика колбочек в глазу примата (59 K jpeg изображение)

В вышеупомянутом антивизуальном антителе пигмента запятнанная ткань, Булочки-колбочки-S выделяются как колбочки, которые не являются запятнанными, потому что антитело признает только L-и М . колбочки визуальный пигмент. Т.е. коричневые запятнанные профили конуса - L-и М. типы колбочки, в то время как незапятнанные профили, окруженные синими кругами - Булочки. Что связано с попаданием на них синего луча света в остриё мембраны данной колбочке. (Wikler и Rakic, 1990).

Принцип трихроматизма[править]

Принципиальная схема организации цветного зрения (на примере сетчатки цыплёнка).
А. Фоторецептор-колбочка. Свет проходит сквозь хрусталика и до пигментов колбочки расположенных на её «дне».
Б.1-Б.4 У птиц обычно четыре типа колбочки (они «тетрахроматы»), что позволяют им синтезировать многоцветное изображение, и различать цвета лучше, чем человек. Обработка полученных разностных сигналов, происходящая в нейронной сети сетчатки (десятки типов клеток) обеспечивает возможность ясного различения тысяч цветов и оттенков.
Принципиальная схема трёхкомпонентного цветного зрения человека, приматов на примере работы колбочек, палочек, ipRGC, головного мозга и явления ретиномоторной реакции фоторецепторов.

Концепция трихроматизма, предложенная Томасом Юнгом в 1802, исследовалась далее Helmholtz в 1866. Эта теория прежде всего основана на цвете, на базе аддитивного синтеза смешивания основных цветов RGB и предлагает комбинацию трех каналов RGB и объяснила функции цветового различия.

Теория трихроматизма включает:

  1. Идентификация спектральной чувствительности двух пигментов колбочки относящейся к сетчатке глаза денситометрией Руштона (Руштон, 1963).
  2. Идентификация трех пигментов конуса микроспектрометрией (Марки, Dobelle и MacNichol, 1964).
  3. Идентификация генетического кода для красной колбочки — L, зелёных колбочек — М. и синих колбочек — S (Nathans и другие, 1986a, b).
  4. Цвет, соответствующий функциям.
  5. Изолируя фоторецепторы и измерение их физиологического repsonses как функция длины волны (Baylor и другие, 1984).
  6. Спектральные размеры чувствительности (Wald-Marre — фунуционирование спектральной чувствительности и функционирование «\(~\pi\dots\) Турникетов» механизмов).

Теория трихроматизма в сочетании с оппонентной теорией цвета противника, предложеная Эрингом в 1872, которая вначале конкурировала с хорошо принятой trichromatic теорией и объясняет trichromasy видения и предсказывает цветовые зоны чувствительности, а «противник» Эринга окрашивает, то в сочетании теории предлагают, что есть три канала: красно-зеленый, синий-желтый и черно-белый, но каждый ответ сопрвождается оппонентным принципом отбора цвета. Таким образом, или красный или зеленый воспринят и никогда зеленоватый-красный. Эринг, однако, никогда не бросал вызов начальным стадиям обработки выраженного в соответствии с trichromatic теорией. Он просто утверждал, что любая цветовая теория видения должна объяснить наше восприятие, то есть, цветовое сопротивление как показано цветным после отбора изображений.

Hurvich и Jameson (1957) обеспечили количественные данные для цветового сопротивления. Используя парадигмы отмены оттенка, были изолированы психофизические цветовые каналы противника. Vl функция использовалась к дискриминации яркости, чтобы описать восприятие черноты и белизны. Поэтому, регулируя количество синих или желтого И красного или зеленого, любая типовая длина волны может быть подобрана (фигура 15). Дополнительные длины волны могут использоваться, чтобы отменить друг друга для всех длин волны кроме четырех уникальных оттенков (синий, зеленый, желтый и красный).

Рис. 15.[7]
  • Рис.15. Hurvich и эксперимент Jameson, используя синий или желтый, красный или зеленый, которые соответствуют всем длинам волны видимого спектра (Hurvich и данные Джамезона (1957) от Бенджамина, W. J. (Эд), Клиническое Преломление Бориша. Филадельфия: W. B. Компания Saunders, 1998).

Другое свидетельство, поддерживающее теорию цвета противника включает:

  1. Электрическая регистрация горизонтальных ячеек от сетчатки рыбы показывает синий-желтый процесс противника и красно-зеленого противника (Svaetichin, 1956).
  2. Электрическая регистрация от бокового geniculate ядра, показывая противнику окрашивает процессы (DeValois и другие, 1966).
  3. Электрическая регистрация ячеек нервного узла от сетчатки примата, показывая противнику окрашивает процессы (Gouras, 1968; de Monasterio и Gouras, 1975; Zrenner и Gouras, 1981).

Стадия Theory:This привела к современной модели нормального цветового видения, которое включает и trichromatic теорию и теорию цвета противника в две стадии (фигура 16). Первую стадию можно рассмотреть как стадия рецептора, которая состоит из этих трех фотопигментов (синие, зеленые и красные конусы). Второе - нервная стадия обработки, где происходит цветовое сопротивление . Вторая стадия - на post-receptoral уровне, и происходит уже на горизонтальном уровне ячейки (рецепторном, в дисках мембраны перед выдачей сжатого сигнала в мозг).[8]


См. также[править]

Примечания[править]