Эмиссионный спектр
Эмиссионный спектр (спектр излучения, спектр испускания — относительная[1] интенсивность электромагнитного излучения объекта исследования по шкале частот.
Чаще всего изучают спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазоне, например от сильно нагретых тел. Спектр излучения вещества представляют в виде горизонтальной цветовой полосы — как результат дисперсии (расщепления) света от объекта призмой, либо в виде графика относительной интенсивности, а также в виде таблиц.
Физика возникновения[править | править код]
Излучение абсолютно чёрного тела[править | править код]
Нагретое вещество излучает[2] электромагнитные волны (фотоны). Спектр этого излучения на фоне спектра излучения абсолютно чёрного тела, при достаточной температуре, на определённых частотах имеет ярко выраженные увеличения интенсивности. Причина повышения интенсивности излучения — в электронах,[3][4] находящихся в условиях квантования энергии. Такие условия возникают внутри атома, в молекулах и кристаллах. Возбуждённые[5] электроны переходят из состояния бо́льшей энергии в состояние меньшей энергии с испусканием фотона. Разница энергий уровней определяет энергию испущенного фотона, и следовательно его частоту в соответствии с формулой:
здесь Eф — энергия фотона, h — постоянная Планка и ν — частота.
Квантование на энергетические уровни зависит от магнитного поля, поэтому от него также зависит спектр излучения (см. Расщепление спектральных линий). Кроме того, сдвиг частоты благодаря эффекту Допплера также приводит к изменению положений линий в спектре движущихся объектов.
Применение[править | править код]
Особенности спектров излучения некоторых элементов можно изучить невооружённым глазом, например, при наблюдениях цвета пламени, в которое внесено немного вещества. В пламени (высокотемпературной плазме) вещество ионизируется, и мы можем наблюдать спектр эмиссии атомов некоторых элементов.
Аналитическая химия[править | править код]
Этот приём издавна использовался для качественного определения некоторых элементов. Например, платиновая проволочка, смоченная раствором хлорида или нитрата стронция, внесенная в пламя, окрашивает его в красный цвет, благодаря излучению ионизированных атомов стронция. Ионы меди окрашивают пламя в голубой или зелёный цвет.
Спектр излучения различен для каждого элемента периодической таблицы Менделеева.
В современной аналитической химии методы исследования эмиссионного спектра используются в приборах для анализа состава сплавов (стилоскоп), методах анализа растворов, солей (пламенная фотометрия).
Астрономия[править | править код]
Спектр излучения используется для дистанционной идентификация состава звёзд по свету от них.
При изучении астрономических объектов (звёзды, галактики, квазары, туманности):
- для определения движения объектов и их частей
- для получения информации о происходящих в них физических процессах
- для получения информации о структуре объекта и расположении его частей.
Сигнализация и пиротехника[править | править код]
Яркий и чистый цвет пламени, окрашенного тем или иным элементом, позволил получать цветные огни - фейерверк.
Прикладная наука, исследующая пути оптимизации приготовления цветных горючих смесей, а также технологией взрывчатых веществ, называется пиротехникой.
Окрашенные пламена используются для сигнализации или целеуказания (сигнальные ракеты, осветительные ракеты, трассирующие пули).
Связанные эффекты[править | править код]
- Спектр поглощения является обратным к спектру испускания. Связано это с тем, что возбуждённый электрон в веществе переизлучает поглощённый фотон не в том же направлении, а энергии поглощённого и излучённого фотона одинаковы.
См. также[править | править код]
Примечания[править | править код]
- ↑ относительно излучения абсолютно чёрного тела при данной температуре
- ↑ Без внешнего освещения
- ↑ Обычное не радиоактивное вещество из протонов, электронов и возможно нейтронов.
- ↑ Для температур не вызывающих ядерных реакций.
- ↑ В данном случае, тепловыми процессами и переизлучением от других электронов объекта