Начальные и граничные условия
Начальные и граничные условия (что в теории дифференциальных уравнений — дополнение к основному дифференциальному уравнению (обыкновенному или в частных производных), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.
Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определенных классов начальных и краевых задач.
Терминология[править | править код]
Иногда к граничным относят и начальные условия в нестационарных задачах, таких как решение гиперболических или параболических уравнений.
Для стационарных задач существует разделение граничных условий на главные и естественные.
Главные условия обычно имеют вид , где — граница области .
Естественные условия содержат также и производную решения по нормали к границе.
Пример[править | править код]
Уравнение описывает движение тела в поле земного тяготения. Ему удовлетворяет любая квадратичная функция вида , где — произвольные числа. Для выделения конкретного закона движения необходимо указать начальную координату тела и его скорость, то есть начальные условия.
Корректность постановки граничных условий[править | править код]
Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:
- Решение должно существовать в каком-либо классе функций;
- Решение должно быть единственным в каком-либо классе функций;
- Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т.д.).
Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближенно, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):
Пусть задано два дифференциальных уравнения: с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:
решения соответствующих уравнений.
Множество функций, для которых выполняются перечисленные требования, называется классом корректности. Некорректную постановку граничных условий хорошо иллюстрирует пример Адамара.
См. также[править | править код]
- Задача Коши
- Краевая задача
- Граничные условия для электромагнитного поля
- Граничные условия 1 рода (Задача Дирихле), en:Dirichlet boundary condition
- Граничные условия 2 рода (Задача Неймана), en:Neumann boundary condition
- Граничные условия 3 рода (Задача Робена), en:Robin boundary condition
- Корректно поставленная задача
Литература[править | править код]
Шаблон:±. Уравнения математической физики. — Физматлит, 2004. — ISBN 5-9221-0310-X.
- А.М. Ахтямов Теория идентификации краевых условий и ее приложения. - М. : Физматлит, 2009.
- А.М. Ахтямов, В.А. Садовничий, Султанаев Я.Т. Обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. - М.: Изд-во Московского университета, 2009.