Hyperanalytic functions

Материал из свободной русской энциклопедии «Традиция». Вы можете дополнить или исправить его.
Перейти к навигации Перейти к поиску


Hyperanalytic function[править | править код]

Introduction[править | править код]

An hyperanalytic function is a function that is locally given by a converging power series with a speed that corresponds to tetration.


Definitions[править | править код]

Let VV and WW be complete Hausdorff topological vector spaces, let WW be locally convex, let cc be an element of VV, and let (a_0,a_1,a_2,\ldots) be an infinite sequence of homogeneous operators from VV to WW with each aka_k of degree kk.

Given an element cc of VV, consider the infinite series kak(xc)k\sum_k a_k(x - c)^k (a power series). Let UU be the interior of the set of xx such that this series converges in WW; we call UU the domain of convergence of the power series. This series defines a function from UU to WW; we are really interested in the case where UU is inhabited, in which case it is a balanced neighbourhood of cc in VV (which is Proposition 5.3 of [Bochnak--Siciak](#BS)).

Let DD be any subset of VV and ff any continuous function from DD to WW. This function ff is hyperanalytic if, for every cDc \in D, there is a power series as above with inhabited domain of convergence UU such that f(x)=kak(xc)kf(x) = \sum_k a_k(x - c)^k for every xx in both DD and UU and just rare aka_k are not equal zero. (That ff is continuous follows automatically in many cases, including of course the finite-dimensional case.)

Examples[править | править код]

It is known that there is a fundamental connection between analyticity of the function and the convergence of its Fourier coefficients. The better the function, the faster its coefficients tend to zero, and vice versa. The power decrease of Fourier coefficients is inherent in functions of the CkC^{k} class while exponential to analytical functions. Here there is a possibility of existence of the hyperanalytic functions, for which the decrease of the Fourier coefficients corresponds to tetration.

Natural hyperanalytic function occurs when considering reticulum with a step LL, in which nodes there are not defined yet objects. The distribution of center's objects can be described using the reticulum functions (RF). The definition of a one-dimensional RF is based on the following identity: (1)1σ2πe12(xσ)2dx=1σ2πL2L2n=e12(xnLσ)2dx=1.\begin{equation}\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x}{\sigma})^{2}}dx=\frac{1}{\sigma\sqrt{2\pi}}\int_{-\frac{L}{2}}^{\frac{L}{2}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}}dx=1. \label{e1}\end{equation}


Definition[править | править код]

From here RF is R(x)=1σ2πn=e12(xnLσ)2\mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}}

It is obvious that the RF can not be laid out in the Fourier series because it does not have antiderivative that can be expressed as elementary functions. By virtue of this RF cannot be decomposed into even and odd functions, while an arbitrary analytic function ff can be only presented in the form of sum of odd and even functions in the interval [a,b][a,b]: f(x)=g(x)+h(x),f\left(x\right)=g\left(x\right)+h\left(x\right), where g(x)=f(xa)f(bx)2,g\left(x\right)=\frac{f\left(x-a\right)-f\left(b-x\right)}{2}, h(x)=f(xa)+f(bx)2.h\left(x\right)=\frac{f\left(x-a\right)+f\left(b-x\right)}{2}.

Due to this the RF can be laid out in an endless row of two primitive hyperanalytic functions by sequential attempts to decompose on even and odd functions. Thus, the RF can be decomposed by the simplest way, but such a series is not one like the orthonormal basis of Fourier series.

Decomposition of RF[править | править код]

Definitions[править | править код]

R(0)\mathbb{R}\left(0\right) is R(0)=Rmax=1σ2πn=e12(nσ)2.\mathbb{R}\left(0\right)=\mathbb{R}_{max}=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}\left(\frac{-n}{\sigma}\right)^{2}}.

R(1/2)\mathbb{R}\left(1/2\right) is R(1/2)=Rmin=1σ2πn=e12(1/2nσ)2.\mathbb{R}\left(1/2\right)=\mathbb{R}_{min}=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}\left(\frac{1/2-n}{\sigma}\right)^{2}}.

Then A0A_{0} is the mean value of RF: A0=Rmax+Rmin2.A_{0}=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}.

As it follows from (1) the mean value of RT is 1. However as will be seen from the further, it is expedient to choose the greater value of the decomposition's constant member. Introduce the following definitions:

First difference[править | править код]

One can approximate first difference by the following way: A1(x)=RmaxRmin2cos(2πx).A_{1}\left(x\right)=\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{2}\cos\left(2\pi x\right).

Definition[править | править код]

Let introduce parameter of the fine structure α\alpha as function of σ\sigma: α(σ)=12RmaxRminRmax+Rmin.\alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}}.

Now A1(x)A_{1}\left(x\right) can be expressed as: A1(x)=Rmax+Rmin2(2α(σ)cos(2πx)).A_{1}\left(x\right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}\left(2\alpha\left(\sigma\right)cos\left(2\pi x\right)\right). The choice of the name and symbol of this parameter is due to the fact that α(0.4992619105929628)=α=e24πϵ0c\alpha\left(0.4992619105929628\right)=\alpha=\frac{e^{2}}{4\pi\epsilon_{0}\hbar c}

is the value known in physics as a fine structure constant.

Even differences[править | править код]

Even differences are a primitive hyperanalytic function V(2i×2πx)\overline{\mathbb{V}}(2i\times2\pi x), which is quasisymmetric relative to the point x=0.25\text{x=0.25}.

Its symmetrical part approximated in the following way: A2i(x)=c2i(cos(2i×2πx)1)A_{2i}\left(x\right)=c_{2i}\left(cos\left(2i\times2\pi x\right)-1\right)

and i=1c2i=Rmax+Rmin21=2k=1α4k\sum_{i=1}^{\infty}c_{2i}=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}-1=2 * \sum_{k=1}^{\infty} \alpha^{4^{k}}


Using the value R(1/4)=R1/4=1σ2πn=e12(1/4nσ)2\mathbb{R}\left(1/4\right)=\mathbb{R}_{1/4}=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}\left(\frac{1/4-n}{\sigma}\right)^{2}}

define the amplitude for c2c_{2}: 12(Rmax+Rmin2R1/4)=2α4.\frac{1}{2}\left(\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}-\mathbb{R}_{1/4}\right)=2\alpha^{4}.

This definition allows to select approximation A(x)A\left(x\right) in the form: A(x)=Rmax+Rmin2(1+2α(σ)cos(2πx))+2α4(cos(2×2πx)1).A\left(x\right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}\left(1+2\alpha\left(\sigma\right)cos\left(2\pi x\right)\right)+2\alpha^{4}\left(cos\left(2\times2\pi x\right)-1\right).

Odd differences[править | править код]

Odd differences are a primitive hyperanalytic function W((2i1)×2πx)\mathbb{W}\left((2i-1)\times2\pi x\right) which is quasiantisymmetric relative to the point x=0.25\text{x=0.25}.

Quasiantisymmetry of W(2πx)\mathbb{W}\left(2\pi x\right) follows from the fact that the integral of A(x)A\left(x\right) differs from 1: 1/21/2A(x)dx1=14(Rmax+Rmin)+12R1/411.02E34.\int_{-1/2}^{1/2}\text{A}\left(x\right)\text{dx}-1=\frac{1}{4}\left(\mathbb{R}_{max}+\mathbb{R}_{min}\right)+\frac{1}{2}\mathbb{R}_{1/4}-1\simeq1.02E-34.

Thus function W((2i1)×2πx)\mathbb{W}\left((2i-1)\times2\pi x\right) should be decomposed in the even and odd function. Its even part is: Wqs((2i1)×2πx)=W((2i1)×2πx)+W((2i1)×2π(0.5x))2=V(2(i+1)×2πx).\mathbb{W}^{\text{qs}}\left((2i-1)\times2\pi x\right)=\frac{\mathbb{W}\left((2i-1)\times2\pi x\right)+\mathbb{W}\left((2i-1)\times2\pi\left(0.5-x\right)\right)}{2}=\overline{\mathbb{V}}(2(i+1)\times2\pi x).

However, as shown above, overlineV(2i×2πxoverline{\mathbb{V}}(2i\times2\pi x) is not an even function.

The odd part of W((2i1)×2πx)\mathbb{W}\left((2i-1)\times2\pi x\right) is no longer a hyperanalytic function and is equal to: Wqa((2i1)×2πx)=W((2i1)×2πx)W((2i1)×2π(0.5x))2.W^{\text{qa}}\left((2i-1)\times2\pi x\right)=\frac{\mathbb{W}\left((2i-1)\times2\pi x\right)-\mathbb{W}\left((2i-1)\times2\pi\left(0.5-x\right)\right)}{2}.

It can be approximated with any degree of accuracy following way: A(Wqa((2i1)×2πx))=β(cos(3(2i1)×2πx)cos((2i1)×2πx)),A(W^{\text{qa}}\left((2i-1)\times2\pi x\right))=\beta(cos\left(3(2i-1)\times2\pi x\right)-cos\left((2i-1)\times2\pi x\right)),

where β\beta is a normalizing multiplier.

Thus, the approximation of R(x)\mathbb{R}(x) is: A(x)=Rmax+Rmin2(1+2αcos(2πx))+2i=1α4i(cos(2i×2πx)1)+2Wmaxi=1α9i2(cos(3×(2i1)×2πx)cos((2i1)×2πx)),A\left(x\right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos\left(2\pi x\right))+2\sum_{i=1}^{\infty}\alpha^{4^{i}}\left(cos\left(2i\times 2\pi x\right)-1\right)+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9{i}^2}\left(cos\left(3 \times (2i-1)\times 2\pi x\right)-cos\left((2i-1) \times 2\pi x\right)\right),

where Wmax\mathbb{W}_{max} is a normalizing multiplier.

Three-dimensional RF[править | править код]

Three-dimensional RF R(x,y,z)\mathbb{R}\left(x,y,z\right) can be obtained from the definition (1.2)\left(1.2\right): R(x,y,z)=Rmax2R(x).\mathbb{R}\left(x,y,z\right)=\mathbb{R}_{max}^{2}\mathbb{R}\left(x\right).

Thus, the approximation of the three-dimensional RF is also the series of the fine structure constant α\alpha along any axis of the reticulum three-dimensional space, and the constant itself is a function of the dimensionless parameter σ\sigma, which is equal to quotient of the "diameter" of some physical object, located in each cell, to the grid step LL</math>.


Quantum derivative with respect to time[править | править код]

To quantize the time the direct use of the lattice idea is too formal. It is therefore appropriate to use a definition of derivative with respect to time but without moving to the limit. Let R(t)\mathbb{R}\left(t\right) is RF on a unit interval [T/2,T/2]\left[-\text{T/2},\text{T/2}\right] and τ=σ\tau=\sigma и T=1\text{T}=1: R(t)=1τ2πi=[exp(12(t+T/4iτ)2)exp(12(tT/4iτ)2)].\mathbb{R}\left(t\right)=\frac{1}{\tau\sqrt{2\pi}}\sum_{i=-\infty}^{\infty}\left[\exp\left(-\frac{1}{2}\left(\frac{t+\text{T/4}-i}{\tau}\right)^{2}\right)-\exp\left(-\frac{1}{2}\left(\frac{t-\text{T/4}-i}{\tau}\right)^{2}\right)\right].

By consistently subtracting sinuses, one can show that the approximation of the R(t)\mathbb{R}\left(t\right) has the following form: A(t)=k=0(1)k+1aksin(2π(2k+1)t).A\left(t\right)=\sum_{k=0}^{\infty}\left(-1\right)^{k+1}a_{k}sin\left(2\pi\left(2k+1\right)t\right).


Let use k+1k+1 equations with different values of ll to determine the coefficient's values aka_{k}: i=0k(1)iaisin(2i+12l+12π4)=R(14(2l+1)).\sum_{i=0}^{k}\left(-1\right)^{i}a_{i}sin\left(\frac{2i+1}{2l+1}\frac{2\pi}{4}\right)=\mathbb{R}\left(\frac{1}{4\left(2l+1\right)}\right).


Given that A\left(1/4\right) is numerically equal to 2(Rmax(τ)+Rmin(τ))α(τ)2\left(\mathbb{R}_{max}\left(\tau\right)+\mathbb{R}_{min}\left(\tau\right)\right)\alpha\left(\tau\right), equation can be written as follows: αeff(t,τ)=12(Rmax(τ)+Rmin(τ))k=0(1)k+1aksin(2π(2k+1)t).\alpha_{eff}\left(t,\tau\right)=\frac{1}{2\left(\mathbb{R}_{max}\left(\tau\right)+\mathbb{R}_{min}\left(\tau\right)\right)}\sum_{k=0}^{\infty}\left(-1\right)^{k+1}a_{k}sin\left(2\pi\left(2k+1\right)t\right).

R(t)\mathbb{R}\left(t\right) is also a hyperanalytic function, as the next approximation takes place: αeff(t,τ)=k=0(1)k+1α(2k+1)2sin(2π(2k+1)t).\alpha_{eff}\left(t,\tau\right)=\sum_{k=0}^{\infty}\left(-1\right)^{k+1}\alpha^{(2k+1)^{2}}sin\left(2\pi\left(2k+1\right)t\right).


The theory of hyperanalytic function was constructed to some extent by A. Rybnikov (2014) http://www.gaussianfunction.com/.