Оксид титана(IV)

Материал из свободной русской энциклопедии «Традиция»
(перенаправлено с «Диоксид титана»)
Перейти к навигации Перейти к поиску
Порошок оксида титана

Оксид титана(IV) (диоксид титана, двуокись титана, титановые белила, пищевой краситель E171) TiO2 — амфотерный оксид четырёхвалентного титана. Является основным продуктом титановой индустрии (на производство чистого титана идёт лишь около 5 % титановой руды).[1]

Строение[править | править код]

Диоксид титана в рутильной форме
Серым цветом обозначены атомы титана, красным — кислорода

Оксид титана существует в виде нескольких модификаций. В природе встречаются кубическая сингония (рутил), тетрагональная сингония (анатаз) и ромбическая сингония (брукит). Искусственно получены ещё две модификации высокого давления — ромбическая IV и гексагональная V.

Характеристики кристаллической решётки[2]
Модификация/Параметр Рутил Анатаз Брукит Ромбическая IV Гексагональная V
Параметры элементарной решётки, нм a 0,45929 0,3785 0,51447 0,4531 0,922
b 0,9184 0,5498
c 0,29591 0,9486 0,5145 0,4900 0,5685
Число формульных единиц в ячейке 2 4 8    
Пространственная группа P4/mnm I4/amd Pbca Рbcn  

При нагревании и анатаз, и брукит необратимо превращаются в рутил (температуры перехода соответственно 400—1000°C и около 750 °C). Основой структур этих модификаций являются октаэдры TiO6, то есть каждый ион Ti4+ окружён шестью ионами O2-, а каждый ион O2- окружён тремя ионами Ti4+. Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трём октаэдрам. В анатазе на 1 октаэдр приходятся 4 общих ребра, в рутиле — 2.

Нахождение в природе[править | править код]

В чистом виде в природе встречается в виде минералов рутила, анатаза и брукита (по строению соответственно кубическая, тетрагональная и ромбическая сингония), причём основную часть составляет рутил. Третье в мире по запасам рутила месторождение находится в Рассказовском районе Тамбовской области. Крупные месторождения находятся также в Чили (Сerro Bianco), канадской провинции Квебек, Сьерра-Леоне.

Свойства[править | править код]

Физические, термодинамическе свойства[править | править код]

Чистый диоксид титана — бесцветные кристаллы (желтеет при нагревании). Для технических целей применяется в раздробленном состоянии, представляя собой белый порошок. Не растворяется в воде и разбавленных минеральных кислотах (за исключением плавиковой).

для рутила 4,235 г/см3[2]
для анатаза 4,05 г/см3[2] (3,95 г/см3[3])
для брукита 4,1 г/см3[2]
  • Температура разложения для рутила 2900 °C[3]

Температура плавления, кипения и разложения для других модификаций не указана, т.к. они переходят в рутильную форму при нагревании (см. выше).

Средняя изобарная теплоёмкость Cp (в Дж/(моль·К))[4]
Модификация Интервал температуры, K
298—500 298—600 298—700 298—800 298—900 298—1000
рутил 60,71 62,39 63,76 64,92 65,95 66,89
анатаз 63,21 65,18 66,59 67,64 68,47 69,12
Термодинамические свойства[5]
Модификация ΔH°f, 298, кДж/моль[6] 298, Дж/моль/K[7] ΔG°f, 298, кДж/моль[8] p, 298, Дж/моль/K[9] ΔHпл., кДж/моль[10]
рутил -944,75 (-943,9[3]) 50,33 -889,49 (-888,6[3]) 55,04 (55,02[3]) 67
анатаз -933,03 (938,6[3]) 49,92 -877,65 (-888,3 [3]) 55,21 (55,48 [3]) 58

Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твёрдость (абразивность), показатель преломления (2,55 — у анатаза и 2,7 — у рутила), диэлектрическая постоянная.

Химические свойства[править | править код]

Диоксид титана амфотерен, то есть проявляет как осно́вные, так и кислотные свойства (хотя реагирует главным образом с концентрированными кислотами). Медленно растворяется в концентированной серной кислоте, образуя соответствующие соли четырёхвалентного титана: TiO2 + H2SO4 → Ti(SO4)2 + 2H2O В концентрированных растворах щелочей или при сплавлении с ними образуются титанаты — соли титановой кислоты (амфотерного гидроксида титана TiO(OH)2) TiO2 + 2NaOH → Na2TiO3 + H2O То же происходит и в концентрированных растворах карбонатов или гидрокарбонатов: TiO2 + K2CO3 → K2TiO3 + CO2↑ TiO2 + 2KHCO3 → K2TiO3 + 2CO2↑ + H2O C перекисью водорода даёт ортотитановую кислоту: TiO2 + 2H2O2 → H4TiO4 При нагревании с аммиаком даёт нитрид титана: 2TiO2 + 4NH3 →(t) 4TiN + 6H2O + O2↑ При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды: TiO2 + BaO → BaO·TiO2 TiO2 + BaСO3 → BaO·TiO2 + CO2↑ TiO2 + Ba(OH)2 → BaO·TiO2 + H2O При нагревании восстанавливается углеродом и активными металлами (Mg, Ca, Na) до низших оксидов. При нагревании с хлором в присутствии восстановителей (углерода) образует тетрахлорид титана. Нагревание до 2200 °C приводит сначала к отщеплению кислорода с образованием синего Ti3O5 (то есть TiO2·Ti2O3), а затем и тёмно-фиолетового Ti2O3. Гидратированный диоксид TiO2·nH2O [гидроксид титана(IV), оксо-гидрат титана, оксогидроксид титана] в зависимости от условий получения может содержать переменные количества связанных с Ti групп ОН, структурную воду, кислотные остатки и адсорбированные катионы. Полученный на холоде свежеосажденный TiO2·nH2O хорошо растворяется в разбавленных минеральных и сильных органических кислотах, но почти не растворяется в растворах щелочей. Легко пептизируется с образованием устойчивых коллоидных растворов. При высушивании на воздухе образует объёмистый белый порошок плотностью 2,6 г/см³, приближающийся по составу к формуле TiO2·2H2O (ортотитановая кислота). При нагревании и длительной сушке в вакууме постепенно обезвоживается, приближаясь по составу к формуле TiO2·H2O (метатитановая кислота). Осадки такого состава получаются при осаждении из горячих растворов, при взаимодействии металлического титана с HNO3 и т. п. Их плотность ~ 3,2 г/см³ и выше. Они практически не растворяются в разбавленных кислотах, не способны пептизироваться. При старении осадки TiO2·nH2O постепенно превращается в безводный диоксид, удерживающий в связанном состоянии адсорбированные катионы и анионы. Старение ускоряется кипячением суспензии с водой. Структура образующегося при старении TiO2 определяется условиями осаждения. При осаждении аммиаком из солянокислых растворов при рН < 2 получаются образцы со структурой рутила, при рН 2—5 — со структурой анатаза, из щелочной среды — рентгеноаморфные. Из сульфатных растворов продукты со структурой рутила не образуются.

Токсические свойства, физиологическое действие, опасные свойства[править | править код]

TLV(предельная пороговая концентрация, США): как TWA (среднесменная концентрация, США) 10 мг/м³ A4 (ACGIH 2001). ПДК в воздухе рабочей зоны - 10 мг/м³ (1998) ООН — 2546

Добыча и производство[править | править код]

Полная статья получение оксида титана(IV) Мировое производство диоксида титана на конец 2004 года достигло приблизительно 5 миллионов тонн. [11] Основными производители и экспортёры диоксида титана:

  • KEMIRA PIGMENTS OY (Финляндия)
  • ЗАО «Крымский Титан» (АР Крым)
  • KRONOS TITAN GmbH & Co. OHG (Германия)
  • Sachtleben (Германия)
  • Kerr-McGee (США)
  • DuPont (США)

В последние годы чрезвычайно быстро растет производство диоксида титана в Китае. В России пигментный диоксид титана не производят, но производят технические марки, используемые в металлургии. На территории СНГ диоксид титана производится в Украине предприятиями «Сумыхимпром», город Сумы, «Крымский титан», г. Армянск) и КП "Титано-магниевый комбинат" (г. Запорожье). Сумский государственный институт минеральных удобрений и пигментов (МИНДИП) в своих научно-исследовательских работах особое место уделяет технология получения оксида титана (IV) сульфатным способом: исследование, разработка новых марок, модернизация технологии и аппаратурного оформления процесса. Как указано выше, диоксид титана встречается в виде минералов, однако этого источника недостаточно, поэтому значительная его часть производится. Существуют два основных промышленных метода получения TiO2: из ильменитового (FeTiO3) концентрата и из тетрахлорида титана.

Производство диоксида титана из ильменитового концентрата[править | править код]

Технология производства состоит из трёх этапов:

  • получение растворов сульфата титана (путём обработки ильменитовых концентратов серной кислотой). В результате получают смесь сульфата титана и сульфатов железа (II) и (III), последний восстанавливают металлическим железом до степени окисления железа +2. После восстановления на барабанных вакуум-фильтрах отделяют растворов сульфтов от шлама. Сульфат железа(II) отделяют в вакуум-кристаллизаторе.
  • гидролиз раствора сульфатных солей титана. Гидролиз проводят методом введения зародышей (их готовят осаждая Ti(OH)4 из растворов сульфата титана гидроксидом натрия). На этапе гидролиза образующиеся частицы гидролизата (гидратов диоксида титана) обладают высокой адсорбционной способностью, особенно по отношению к солям Fe3+, именно по этой причине на предыдущей стадии трёхвалентное железо восстанавливается до двухвалентного. Варьируя условия проведения гидролиза (концентрацию, длительность стадий, количество зародышей, кислотность и т. п.) можно добиться выхода частиц гидролизата с заданными свойствами, в зависимости от предполагаемого применения.
  • термообработка гидратов диоксида титана. На этом этапе, варьируя температуру сушки и используя добавки (такие, как оксид цинка, хлорид титана и используя другие методы можно провести рутилизацию (то есть перестройку оксида титана в рутильную модификацию). Для термообработки используют вращающиеся барабанные печи длиной 40—60 м. При термообработке испаряется вода (гидроксид титана и гидраты оксида титана переходят в форму диоксида титана), а также диоксид серы.

Производство диоксида титана из тетрахлорида титана[править | править код]

Существуют три основных метода получения диоксида титана из его тетрахлорида:

  • гидролиз водных растворов тетрахлорида титана (с последующей термообработкой осадка)
  • парофазный гидролиз тетрахлорида титана (основан на взаимодействии паров тетрахлорида титана с парами воды). Процесс обычно ведётся при температуре 900—1000°C
  • термообработка тетрахлорида (сжигание в токе кислорода)

Применение[править | править код]

Основные применения диоксида титана:

  • производителей лакокрасочных материалов, в частности, титановых белил — 57 % от всего потребления[11] (диоксид титана рутильной модификации обладает более высокими пигментными свойствами — светостойкостью, разбеливающей способностью и др.)
  • производство пластмасс — 21 %[11]
  • производство ламинированной бумаги — 14 %[11]
Мировые мощности по производству пигментов на основе диоксида титана (тыс. тонн/год)[12]
  2001 г. 2002 г. 2003 г. 2004 г.
Америка 1730 1730 1730 1680
Запад. Европа 1440 1470 1480 1480
Япония 340 340 320 320
Австралия 180 200 200 200
Прочие страны 690 740 1200 1400
Всего 4380 4480 4930 5080

Другие применения — в производстве резиновых изделий, стекольном производстве (термостойкое и оптическое стекло), как огнеупор (обмазка сварочных электродов и покрытий литейных форм).

Цены и рынок[править | править код]

Цены на диоксид титана отличаются в зависимости от степени чистоты и марки. Так, особо чистый (99,999 %) диоксид титана в рутильной и анатазной форме стоил в сентябре 2006 года 0,5—1 доллара за грамм (в зависимости от размера покупки), а технический диоксид титана — 2,2—4,8 доллара за килограмм в зависимости от марки и объёма покупки[13].

Нормативы[править | править код]

  • Двуокись титана пигментная. Технические условия ГОСТ 9808-84

В настоящее время диоксид титана по ГОСТ 9808-84 не выпускается.

  • Диоксид титана пигментный. ТУ У 24.1-05762329-001-2003

По данным техническим условиям работает ГАК "Титан" (г. Армянск).

  • Титана диоксид пигментный. ТУ У 24.1-05766356-054:2005

По данным техническим условиям работает ОАО "Сумыхимпром" (г. Сумы).

Использованная литература[править | править код]

  1. Б. В. Некрасов. Основы общей химии. Т. I изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. С. 644, 648
  2. Т. Г. Ахметов, Р. Т. Порфирьева, Л. Г. Гайсин и др. Химическая технология неорганических веществ: в 2 кн. Кн. 1 Под ред. Т. Г. Ахметова.—М.:Высшая школа, 2002 ISBN 5-06-004244-8 С. 369—402
  3. Химия: Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.:Химия, 2000. С. 411
  4. Химическая энциклопедия (электронная версия) С. 593, 594

Ссылки[править | править код]

Примечания[править | править код]

  1. http://www.snab.ru/lkm2/01/03.pdf
  2. а б в г Химическая энциклопедия
  3. а б в г д е ё ж Рабинович. В. А., Хавин З. Я. Краткий химический справочник Л.:Химия, 1977 с. 105
  4. Краткий справочник физико-химических величин. Изд. 8-е, перераб./Под ред. А. А. Равделя и А. М. Пономаревой. — Л.:Химия, 1983. С.60
  5. Кроме изменения стандартной энтальпии плавления там же с. 82
  6. изменение стандартной энтальпии (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
  7. стандартная энтропия при температуре 298 K
  8. изменение стандартной энергии Гиббса (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
  9. стандартная изобарная теплоёмкость при температуре 298 K
  10. Изменение энтальпии плавления. Данные по Химической энциклопедии с. 593
  11. а б в г http://www.titanium-chemical.com
  12. http://www.titanmet.ru/Pages/News.aspx?action=view&nid=4eeff716-272d-433f-a74d-a6e046c66a86&lang=ru
  13. http://www.pure-tio2.com/buy.htm

Литература[править | править код]