Михал Ирани

Материал из свободной русской энциклопедии «Традиция»
Перейти к навигации Перейти к поиску
Михал Ирани
МихалираниI.jpg
Место рождения: Израиль
В запросе есть пустое условие.
Научная сфера:

Михал Ирани (англ. Michal Irani, ивр. מיכל איראני) — израильский учёный, специалист по компьютерному зрению, доктор наук, профессор кафедры компьютерных наук и прикладной математики в Институте Вейцмана[1].

Биография[править | править код]

Получила степени бакалавра по математике и информатике, магистра и доктора философии в области компьютерных наук (все — в Еврейском университете Иерусалима).

В 1993—1996 годах была членом Лаборатории технологий зрения в Исследовательском центре Сарноффа (Принстон).

В 1997 году присоединилась к Институту Вейцмана.

Исследования сосредоточены на компьютерном зрении, обработке изображений, искусственном интеллекте и анализе видеоинформации. В частности, она провела работу по пониманию внутренней статистики естественных изображений и видео, пространственно-временному анализу видео и визуальному выводу по композиции.

В обработке изображений существует класс методов Super-resolution (SR), позволяющих качественно увеличить разрешение исходного изображения, при этом происходит преодоление оптического предела объектива и/или физического разрешения цифрового сенсора, который записал изображение. Алгоритмы SR применяют 2 подхода для вычисления результирующего изображения: 1) на базе множества кадров одного объекта; 2) самообучающаяся система с базой образцов. Учёные из лаборатории компьютерного зрения факультета математики и компьютерных наук института Вейцмана предложили новую технику, где используются статистические алгоритмы, а образцы берут из единственного изображения. Авторы — Даниэль Гласнер, Шай Багон, Михал Ирани — сравнивают свой метод с двумя стандартными способами интерполяции — метод ближайшего соседа и бикубическая интерполяция, а также тестируют SR-техники на базе образцов, и ещё одну SR-технику, применяющую статистические алгоритмы на базе единственного образца, то есть примерно как в случае с методом Гласнера-Багона-Ирани.

Труды[править | править код]

  • Liad Pollak Zuckerman, Eyal Naor, George Pisha, Shai Bagon, Michal Irani, Across Scales & Across Dimensions: Temporal Super-Resolution using Deep Internal Learning, European Conference on Computer Vision (ECCV), August 2020.
  • Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William T. Freeman, Tali Dekel, Semantic Pyramid for Image Generation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
  • Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T. Freeman, Michael Rubinstein, Michal Irani, Tali Dekel, SpeedNet: Learning the Speediness in Videos, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
  • Assaf Shocher, Ben Feinstein, Niv Haim, Michal Irani, From Discrete to Continuous Convolution Layers, arXiv preprint arXiv:2006.11120.
  • Roman Beliy*, Guy Gaziv*, Assaf Hoogi, Fracesca Strappini, Tal Golan, Michal Irani, From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI, Conference on Neural Information Processing Systems (NeurIPS), December 2019.
  • Sefi Bell-Kligler, Assaf Shocher, Michal Irani, “KernelGAN”: Blind Super-Resolution Kernel Estimation using an Internal-GAN, Conference on Neural Information Processing Systems (NeurIPS), December 2019.
  • Assaf Shocher, Shai Bagon, Phillip Isola, Michal Irani, InGAN: Capturing and Remapping the "DNA" of a Natural Image, International Conference on Computer Vision (ICCV), October 2019.
  • An earlier version of this paper appeared in 2018 as:
  • Assaf Shocher, Shai Bagon, Phillip Isola, Michal Irani, Internal Distribution Matching for Natural Image Retargeting, arXiv preprint arXiv:1812.00231v1
  • Yosef Gandelsman, Assaf Shocher, Michal Irani, "Double-DIP": Unsupervised Image Decomposition via Coupled Deep-Image-Priors, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  • Assaf Shocher, Nadav Cohen, Michal Irani. “Zero-Shot” Super-Resolution using Deep Internal Learning. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  • Michal Irani. “Blind” Visual Inference by composition. Pattern Recognition Letters, Special Prize Issue. December 2017.
  • Yuval Bahat, Netalee Efrat, Michal Irani. Non-Uniform Blind Deblurring by Reblurring. International Conference on Computer Vision (ICCV), October 2017.
  • Michal Yarom, Michal Irani. Temporal-Needle: A view and appearance invariant video descriptor, Arxiv 2016.
  • Yuval Bahat, Michal Irani. Blind Dehazing Using Internal Patch Recurrence. International Conference on Computational Photography (ICCP), May 2016.
  • Or Lotan, Michal Irani. Needle-Match: Reliable Patch Matching Under High Uncertainty, International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  • Tali Dekel, Tomer Michaeli, Michal Irani, William T. Freeman, Revealing & Modifying Non-Local Variations in a Single Image. ACM Transactions on Graphics (TOG). Proc. SIGGRAPH Asia 2015
  • A. Faktor and M. Irani, Video Segmentation by Non-Local Consensus Voting. British Machine Vision Conference (BMVC), September 2014
  • T. Michaeli and M. Irani, Blind Deblurring Using Internal Patch Recurrence. European Conference on Computer Vision (ECCV), September 2014.
  • A. Faktor and M. Irani, “Clustering by Composition” – Unsupervised Discovery of Image Categories. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(6): 1092-1106, June 2014.
  • A. Faktor and M. Irani, Co-Segmentation by Composition. International Conference on Computer Vision (ICCV), October 2013.
  • T. Michaeli and M. Irani, Nonparametric Blind Super-Resolution. International Conference on Computer Vision (ICCV), October 2013.
  • M. Zontak, I. Mosseri and M. Irani, Separating Signal from Noise using Patch Recurrence Across Scales, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013.
  • I. Mosseri, M. Zontak and M. Irani, Combining the Power of Internal and External Denoising, IEEE International Conference on Computational Photography (ICCP), April 2013.
  • A. Faktor and M. Irani, “Clustering by Composition” – Unsupervised Discovery of Image Categories. European Conference on Computer Vision (ECCV), October 2012
  • O. Shahar, A. Faktor and M. Irani, Space-Time Super-Resolution from a Single Video. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011.
  • M. Zontak and M. Irani, Internal Statistics of a Single Natural Image. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011.
  • E. Shechtman, A. Rav-Acha, M. Irani and S. Seitz, Regenerative Morphing. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2010.
  • S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2010.
  • N. Ben-Eliezer, M. Irani, and L. Frydman, Super-Resolved Spatially Encoded Single-Scan 2D MRI. Magnetic Resonance in Medicine 63:1594–1600 (2010).
  • D. Glasner, S. Bagon, and M. Irani, Super-Resolution from a Single Image. International Conference on Computer Vision (ICCV), October 2009.
  • S. Bagon, O. Boiman and M. Irani, What is a Good Image Segment? A Unified Approach to Segment Extraction. European Conference on Computer Vision (ECCV), October 2008.
  • D. Simakv, Y. Caspi, E. Shechtman and M. Irani, Summarizing Visual Data Using Bidirectional Similarity. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008.
  • O. Boiman, E. Shechtman and M. Irani, In Defense of Nearest-Neighbor Based Image Classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008 .
  • Y. Wexler, E. Shechtman and M. Irani, Space-Time Completion of Video . In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), March 2007.
  • E. Shechtman and M. Irani, Matching Local Self-Similarities across Images and Videos. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.
  • L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, Actions as Space-Time Shapes. In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29(12): 2247-2253, December 2007.
  • O. Boiman and M. Irani, Detecting Irregularities in Images and in Video. International Journal of Computer Vision (IJCV), 74(1), 17–31, August 2007.
  • E. Shechtman and M. Irani, Space-time behavior based correlation – OR – How to tell if two underlying motion fields are similar without computing them? IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29(11): 2045-2056, November 2007.
  • O. Boiman and M. Irani, Similarity by Composition. Neural Information Processing Systems (NIPS), Vancouver, December 2006.
  • L. Zelnik-Manor and M. Irani, On single-Sequence and Multi-Sequence Factorizations. International Journal of Computer Vision (IJCV), 67(3): 313-326, May 2006.
  • L. Zelnik-Manor and M. Irani, Statistical Analysis of Dynamic Actions. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 28(9): 1530--1535, September 2006.
  • L. Zelnik-Manor, M. Machline, and M. Irani, Multi-body Factorization With Uncertainty: Revisiting Motion Consistency. International Journal of Computer Vision (IJCV), 68(1): 27-41 (special issue on Vision and Modeling of Dynamics Scenes), June 2006.
  • Y. Caspi, D. Simakov, and M. Irani, Feature-Based Sequence-to-Sequence Matching. International Journal of Computer Vision (IJCV), 68(1): 53-64 (special issue on Vision and Modeling of Dynamics Scenes), June 2006.
  • Y. Ukrainitz and M. Irani, Aligning Sequences and Actions by Maximizing Space-Time Correlations. European Conference on Computer Vision (ECCV), May 2006.
  • M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, Actions as Space-Time Shapes. IEEE International Conference on Computer Vision (ICCV), Beijing, October 2005.
  • O. Boiman and M. Irani, Detecting Irregularities in Images and in Video. IEEE International Conference on Computer Vision (ICCV), Beijing, October 2005.
  • E. Shechtman, Y. Caspi, and M. Irani, Space-Time Super-Resolution. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 27(4): 531-545, April 2005.
  • B. Sarel and M. Irani, Separating Transparent Layers of Repetitive Dynamic Behaviors. IEEE International Conference on Computer Vision (ICCV), Beijing, October 2005.
  • E. Shechtman and M. Irani, Space-Time Behavior Based Correlation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2005.
  • Y. Wexler, E. Shechtman, and M. Irani, Space-Time Video Completion. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2004.
  • B. Sarel and M. Irani, Separating Transparent Layers through Layer Information Exchange. European Conference on Computer Vision (ECCV), May 2004.
  • L. Zelnik-Manor and M. Irani, Temporal Factorization Vs. Spatial Factorization. European Conference on Computer Vision (ECCV), May 2004.
  • L. Zelnik-Manor and M. Irani, Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2003
  • L Zelnik-Manor; Michal Irani (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence. 24, 2, p. 214-223 Abstract
  • M. Irani, P. Anandan, and Meir Cohen, Direct Recovery of Planar-Parallax from Multiple Frames . IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Vol. 24, No. 11, pp. 1528 1534, November 2002.
  • Y. Caspi and M. Irani, Aligning Non-Overlapping Sequences. International Journal of Computer Vision (IJCV), Vol. 48, No. 1, pp. 39-51, 2002.
  • M. Irani, Multi-Frame Correspondence Estimation Using Subspace Constraints . International Journal of Computer Vision (IJCV), Vol. 48, No. 3, pp. 173 194, July/August 2002.
  • M. Irani, T. Hassner, and P. Anandan, What Does the Scene Look Like from a Scene Point ? European Conference on Computer Vision (ECCV), May 2002.
  • Y. Caspi and M. Irani, Spatio-Temporal Alignment of Sequences. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Vol. 24, No. 11, pp. 1409-1424, November 2002.
  • E. Shechtman, Y. Caspi, and M. Irani, Increasing Space-Time Resolution in Video . European Conference on Computer Vision (ECCV), May 2002
  • L. Zelnik-Manor and M. Irani, Multi-View Constraints on Homographies. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Vol. 24, No. 2, pp. 214 223, February 2002.
  • P. Anandan and M. Irani, Factorization with Uncertainty . International Journal of Computer Vision (IJCV), 49(2-3): 101-116, September 2002.
  • Caspi, Y; Irani, M (2001). Alignment of non-overlapping sequences. Eighth Ieee International Conference On Computer Vision, Vol Ii, Proceedings. 76-83.
  • L. Zelnik-Manor and M. Irani, Event-Based Video Analysis . IEEE Conference on Computer Vision and Pattern Recognition (CVPR), December 2001.
  • Y. Caspi, M. Irani: Step towards Sequence-to-Sequence Alignment. CVPR 2000: 2682-2689
  • M. Irani and P. Anandan, Factorization with Uncertainty . European Conference on Computer Vision (ECCV), June 2000.
  • L. Zelnik-Manor and M. Irani, Multi-Frame Estimation of Planar Motion . IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Vol. 22, No. 10, pp. 1105-1116, October 2000.
  • M. Irani, P. Anandan, M. Cohen: Direct Recovery of Planar-Parallax from Multiple Frames. Workshop on Vision Algorithms 1999: 85-99
  • L. Zelnik-Manor, M. Irani: Multi-View Subspace Constraints on Homographies. ICCV 1999: 710-715
  • M. Irani: Multi-Frame Optical Flow Estimation using Subspace Constraints. ICCV 1999: 626-633
  • L. Zelnik-Manor, M. Irani: Multi-Frame Alignment of Planes. CVPR 1999: 1151-1156
  • M. Irani and P. Anandan, About Direct Methods. ICCV workshop on Vision Algorithms, pp. 267-277, Corfu, September 1999.
  • D. Weinshall, P. Anandan, and M. Irani, From Ordinal to Euclidean Reconstruction with Partial Scene Calibration. ECCV'98 Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE Workshop), June 1998 .
  • M. Irani, P. Anandan, and D. Weinshall, From Reference Frames to Reference Planes: Multi-View Parallax Geometry and Applications . European Conference on Computer Vision (ECCV), June 1998.
  • M. Irani and P. Anandan, 1997. A Unified Approach to Moving Object Detection in 2D and 3D Scenes . IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), June 1998.
  • M. Irani and P. Anandan, Robust Multi-Sensor Image Alignment . IEEE International Conference on Computer Vision (ICCV), India, January 1998.
  • M. Irani and P. Anandan, Video Indexing Based on Mosaic Representations. Proceedings of IEEE, May 1998.
  • Irani, M; Sawhney, HS; Kumar, R; Anandan, P (1997). Interactive content-based video indexing and browsing. 1997 Ieee First Workshop On Multimedia Signal Processing. 313-318.
  • Irani, M; Rousso, B; Peleg, S. Recovery of Ego-Motion Using Region Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence. 19:268-272.
  • M. Irani, P. Anandan: A unified approach to moving object detection in 2D and 3D scenes. ICPR 1996: 712-717
  • M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu, Efficient Representations of Video Sequences and Their Applications . Signal Processing: Image Communication, special issue on Image and Video Semantics: Processing, Analysis, and Application, Vol. 8, No. 4, May 1996.
  • M. Irani and P. Anandan, Parallax Geometry of Pairs of Points for 3D Scene Analysis . European Conference on Computer Vision (ECCV), April 1996.
  • P. Anandan, M. Irani, R. Kumar, James R. Bergen: Video as an image data source: efficient representations and applications. ICIP 1995: 318-321
  • M. Irani, P. Anandan, Steven C. Hsu: Mosaic Based Representations of Video Sequences and Their Applications. ICCV 1995: 605-611
  • M. Irani, S. Hsu, and P. Anandan, Video Compression Using Mosaic Representations . Signal Processing: Image Communication, special issue on Coding Techniques for Low Bit-rate Video, Vol. 7, No. 4-6, pp. 529-552, November 1995.
  • M. Irani, B. Rousso, S. Peleg: Recovery of ego-motion using image stabilization. CVPR 1994: 454-460
  • M. Irani, B. Rousso, and S. Peleg, Computing Occluding and Transparent Motions . International Journal of Computer Vision (IJCV), Vol. 12, No. 1, pp. 5-16, February 1994.
  • M. Irani, B. Rousso, S. Peleg: Robust Recovery of Ego-Motion. CAIP 1993: 371-378
  • M. Irani and S. Peleg, Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency . Journal of Visual Communication and Image Representation, Vol. 4, No. 4, pp. 324-335, December 1993.
  • Michal Irani, Shmuel Peleg: Image sequence enhancement using multiple motions analysis. CVPR 1992: 216-221
  • M. Irani, B. Rousso, S. Peleg: Detecting and Tracking Multiple Moving Objects Using Temporal Integration. ECCV 1992: 282-287
  • M. Irani and S. Peleg, Improving Resolution by Image Registration . CVGIP: Graphical Models and Image Processing, Vol. 53, pp. 231-239, May 1991.
  • Yuval Bahat, Michal Irani, Gregory Shakhnarovich, Natural and Adversarial Error Detection using Invariance to Image Transformations, arXiv:1902.00236.

Источники[править | править код]