Термоэлектрогенератор
Термоэлектрогенератор — это техническое устройство предназначенное для прямого преобразования тепловой энергии в электричество, посредством использования в его конструкции термоэлементов (термоэлектрических материалов).
История изобретения термоэлектрогенераторов[править | править код]
Типы применяемых термоэлектрогенераторов[править | править код]
- Топливные:Тепло от сжигания топлив(природный газ, нефть, уголь),и тепло от горения пиротехнических составов(шашек).
- Радиоизотопные: Тепло от распада изотопов(распад не контролируется и работа определяется периодом полураспада).
- Атомные: Тепло атомного реактора (уран-233,-235,плутоний,торий), как правило здесь термоэлектрогенератор это вторая и третья ступень преобразования.
- Солнечные: Тепло от солнечных коллекторов(зеркала, линзы, тепловые трубы).
- Утилизационные: Тепло из любых источников выделяющих сбросное тепло (выхлопные и печные газы и др).
Полупроводниковые материалы для прямого преобразования энергии[править | править код]
Для термоэлектрогенераторов используются полупроводниковые термоэлектрические материалы, обеспечивающие наиболее высокий коэффициент преобразования тепла в электричество. Список веществ имеющих термоэлектрические свойства достаточно велик(тысячи сплавов и соединений), но лишь немногие из них позволяют в достаточно полной мере использоватся для преобразования тепловой энергии. Современная наука постоянно изыскивает новые и новые полупроводниковые композиции, и прогресс в этой области обеспечивается не столько теорией, сколько практикой, ввиду сложности физических процессов происходящих в термоэлектрических материалах. Определенно можно сказать, что на сегодняшний день не существует термоэлектрического материала в полной мере удовлетворяющего промышленность своими свойствами, и главным инструментом в создании такого материала является эксперимент. Важнейшими свойствами полупроводникового материала для термоэлектрогенераторов являются:
- КПД: Желателен как можно более высокий КПД.
- Технологичность: Возможность любых видов обработки.
- Стоимость: Желательно отсутствие в составе редких элементов или их меньшее количество, достаточная сырьевая база(для расширения сфер ассимиляции и доступности).
- Коэффициент термо-ЭДС: Желателен как можно более высокий коэффициент термо-ЭДС (для упрощения конструкции).
- Токсичность: Желательно отсутствие или малое содержание токсичных элементов (например:Свинец, Висмут, Теллур, Селен, или их инертное состояние (в составе сплавов).
- Рабочие температуры: Желателен как можно более широкий температурный диапазон для использования высокопотенциального тепла и следовательно увеличения преобразуемой тепловой мощности.
Пути развития и повышения КПД[править | править код]
Самым пожалуй важным в развитии термоэлектрогенераторов и увеличения их КПД является - материаловедение, и воспитание специалистов высочайшего класса. Именно вопросы разработки новых материалов являются ключевыми в прогрессе термоэлектрогенераторов.Вот наиболее актуальные направления для ТЭГов:
- Эффективный термоэлектрический материал: КПД преобразования,термо-ЭДС, пластичность,тонкопленочное исполнение.
- Эффективный и совместимый с теплообменником жидкометаллический теплоноситель.
- Расширение использования высококачественной керамики в конструкции ТЭГ.
- Унификация узлов преспособленных в разных случаях применения.
- Предельное повышение энергоплотности ТЭГов до уровня автомобильных и авиационных двигателей, и выше.
Типы термоэлектрогенераторов и основных состовляющих генераторных узлов | 1965.год. | 1970.год. | 1975.год. | 1980.год. | Карно. |
---|---|---|---|---|---|
Солнечная энергия без концентрации | 0,8 | 0,85 | 0,9 | 0,92 | 0,96 |
Солнечная энергия с концентрацией | 0,65 | 0,7 | 0,75 | 0,8 | 0,9 |
Газовые горелки | 0,5 | 0,6 | 0,65 | 0,7 | 0,8 |
Газовые топки | 0,75 | 0,8 | 0,85 | 0,9 | 0,92 |
Изотопы | 0,8 | 0,85 | 0,9 | 0,95 | 1,00 |
Атомные реакторы | 0,75 | 0,8 | 0,85 | 0,95 | 1,00 |
Низкотемпературные термоэлектрические материалы | 0,06 | 0,08 | 0,1 | 0,12 | 0,5 |
Среднетемпературные термоэлектрические материалы | 0,04 | 0,06 | 0,08 | 0,1 | 0,35 |
Высокотемпературные термоэлектрические материалы | 0,04 | 0,05 | 0,06 | 0,07 | 0,23 |
Каскадные термоэлементы | 0,12 | 0,14 | 0,18 | 0,20 | 0,77 |
Комутация термоэлектрических батарей | 0,9 | 0,93 | 0,95 | 0,98 | 0,99 |
Изоляция термоэлектрических батарей | 0,9 | 0,92 | 0,95 | 0,97 | 1,00 |
Тепловой контакт | 0,9 | 0,93 | 0,95 | 0,97 | 0,99 |
Теплоноситель | 0,9 | 0,92 | 0,93 | 0,94 | 0,98 |
Охлаждающее оребрение наземное | 0,55 | 0,6 | |||
Охлаждающее оребрение космическое | 0,8 | 0,85 | |||
Солнечный космический термоэлектрогенератор без концентратора | 0,016 | 0,025 | 0,035 | 0,045 | 0,16 |
Солнечный космический термоэлектрогенератор с концентратором | 0,017 | 0,029 | 0,043 | 0,061 | 0,25 |
Солнечный наземный термоэлектрогенератор с концентратором | 0,029 | 0,044 | 0,088 | 0,145 | 0,59 |
Газовый термоэлектрогенератор с оребрением | 0,013 | 0,023 | 0,030 | 0,043 | 0,20 |
Газовый термоэлектрогенератор с теплоносителем | 0,02 | 0,035 | 0,073 | 0,175 | 0,57 |
Радиоизотопный термоэлектрогенератор с оребрением | 0,021 | 0,032 | 0,049 | 0,12 | 0,36 |
Радиоизотопный термоэлектрогенератор с теплоносителем | 0,032 | 0,075 | 0,129 | 0,24 | 0,71 |
Реакторный космический термоэлектрогенератор | 0,016 | 0,023 | 0,044 | 0,113 | 0,36 |
Реакторный наземный термоэлектрогенератор | 0,03 | 0,047 | 0,121 | 0,24 | 0,71 |
Термоэлектрогенератор типа парового котла | 0,226 | 0,66 |
- Примечание: Коэффициент Карно = 1 соответствует 100%.
Из таблицы заметен существенный рост КПД, связанный прежде всего с тщательным совершенствованием технологий изготовления материалов, рациональным исполнением конструкций, развитием материаловедения в области термоэлектричества.
Области применения термоэлектрогенераторов[править | править код]
Литература[править | править код]
- МГД-генераторы и термоэлектрическая энергетика.Киев."Наукова думка".1983.г.
- Поздняков Б. С, Коптелов Е. А. Термоэлектрическая энергетика.М., Атомиздат, 1974 г., 264 с.