Уравнение Лапласа
Уравнение Лапласа — уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
и является частным случаем уравнения Гельмгольца.
Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:
Также и в n-мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.
С помощью дифференциального оператора
— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как
В этом случае размерность пространства указывается явно (или подразумевается).
Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнение Лапласа называется уравнением Пуассона.
- Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах").
Другие формы уравнения Лапласа[править | править код]
В сферических координатах уравнение имеет вид
В полярных координатах r, φ уравнение имеет вид
См. также оператор набла в различных системах координат.
Применение уравнения Лапласа[править | править код]
Уравнение Лапласа возникает во многих физических задачах механики, теплопроводности, электростатики, гидравлики.
Решения уравнения Лапласа[править | править код]
Несмотря на то, что уравнение Лапласа является одним из самых простых в математической физике, его решение сталкивается с трудностями. Особенно трудным бывает численное решение из-за нерегулярности функций и наличия особенностей.
Общее решение[править | править код]
Одномерное пространство[править | править код]
В одномерном вещественном пространстве уравнение Лапласа, сводящееся к равенству нулю второй производной, имеет общим решением линейную функцию:
где — произвольные постоянные.
Двумерное пространство[править | править код]
Общее решение уравнения Лапласа на двумерном пространстве называется аналитической функцией. Аналитические функции рассматриваются в теории функций комплексного переменного, и решение уравнения Лапласа можно свести к функции комплексного переменного.
Уравнение Лапласа для двух независимых переменных формулируется в следующем виде
Аналитические функции[править | править код]
Если z = x + iy, и
то условия Коши — Римана являются необходимыми и достаточными для того, чтобы функция f(z) была аналитической:
И действительная и мнимая части аналитических функций удовлетворяют уравнению Лапласа. Продифференцировав условия Коши — Римана, получаем
А это ни что иное, как уравнение Лапласа для функции u. Точно также показывается, что функция v удовлетворяет уравнению Лапласа.
Трёхмерное пространство[править | править код]
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.
|
Функция Грина[править | править код]
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.
|
Задача Дирихле[править | править код]
Задача Дирихле — краевые условия для уравнения Лапласа, когда искомая функция задана на ограниченной области, и известны её значения на границе.
Задача Неймана[править | править код]
Задача Неймана — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода.
Ссылки[править | править код]
- Владимиров В.С., Жаринов В.В. Уравнения математической физики. — Физматлит, 2004. — ISBN 5-9221-0310-Xо книге
- Дж. Шарма, К. Сингх Уравнения в частных производных для инженеров.