Четырёхугольник
Четырёхугольник - геометрическая фигура, состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.
Сумма углов выпуклого четырёхугольника равна 360°:
∠A+∠B+∠C+∠D=360°.
Не существует четырёхугольников, у которых все углы острые или все углы тупые. Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:
∠A < ∠B+∠C+∠D, ∠B < ∠A+∠C+∠D,
∠C < ∠A+∠B+∠D, ∠D < ∠A+∠B+∠D.
Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:
a < b+c+d, b < a+c+d,
c < a+b+d, d < a+b+c.
Площадь произвольного выпуклого четырёхугольника равна:
где
Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины. Диагонали выпуклого четырёхугольника и пересекаются, а невыпуклого – нет. Площадь произвольного выпуклого четырёхугольника:
где - угол между диагоналями.
Максимальную площадь будет иметь четырехугольник, который вписан в окружность. Вычисляется либо по формуле Брахмагупты:
либо по формуле Г.Александрова: