Интегральная схема
Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх), чип, микрочи́п (англ. chip — щепка, обломок, фишка) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещенная в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент (2006 год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.
История[править | править код]
В 1958 году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был владельцем собственной компании по производству полупроводников Fairchild Semiconductor Corporation. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и ученые решили попробовать их объединить в один монолитный кристалл из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В 1959 году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в 1961 году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность. Первая российская (советская) полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.
Уровни проектирования[править | править код]
- Физический — методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
- Электрический — принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.).
- Логический — логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.).
- Схемо- и системотехнический уровень — схемо- и системотехническая схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.).
- Топологический — топологические фотошаблоны для производства.
- Программный уровень (для микроконтроллеров и микропроцессоров) — команды ассемблера для программиста.
В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.
Классификация[править | править код]
Степень интеграции[править | править код]
В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (в скобках количество элементов для цифровых схем):
- МИС — малая интегральная схема (до 100 элементов в кристалле);
- СИС — средняя интегральная схема (до 1 000);
- БИС — большая интегральная схема (до 10 000);
- СБИС — сверхбольшая интегральная схема (до 1 миллиона);
- УБИС — ультрабольшая интегральная схема (до 1 миллиарда);
- ГБИС — гигабольшие (более 1 миллиарда).
В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.
Технология изготовления[править | править код]
- Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).
- Пленочная микросхема — все элементы и межэлементные соединения выполнены в виде пленок:
- толстоплёночная интегральная схема;
- тонкоплёночная интегральная схема.
- Гибридная микросхема — кроме полупроводникового кристала содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещенных в один корпус.
Вид обрабатываемого сигнала[править | править код]
Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.
Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определенный диапазон напряжения. Например, для микросхем ТТЛ-логики при питании +5 В диапазон напряжения 0…0,8 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В.
Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают все большее распространение.
Технологии изготовления[править | править код]
Типы логики[править | править код]
Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.
- Микросхемы на униполярных (полевых) транзисторах — самые экономичные (по потреблению тока):
- Микросхемы на биполярных транзисторах:
- РТЛ — резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
- ДТЛ — диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
- ТТЛ — транзисторно-транзисторная логика — микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
- ТТЛШ — транзисторно-транзисторная логика с диодами Шотки — усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шотки.
- ЭСЛ — эмиттерно-связанная логика — на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, — что существенно повышает быстродействие.
КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распротранёнными логиками микросхем. Где небходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.
Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но наиболее энергопотребляющими и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.
Технологический процесс[править | править код]
При изготовлении микросхем используется фотопроцесс. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.
В 70-х годах ширина процесса составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.
В 90-х годах из-за нового витка "войны платформ" экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 90-х процессоры (например ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм. Потом их уровень поднялся до 0,25-0,35 мкм. Следующие процессоры (Pentium 2, K6-2+, Athlon) уже делали по технологии 0,18 мкм.
В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось влоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню совершенствую второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.
Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,065 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung - 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы Intel по переходу на уровень 0,030 мкм. уже к 2006 году так и не сбылись.
Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.
Назначение[править | править код]
Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).
Аналоговые схемы[править | править код]
- Операционные усилители
- Генераторы сигналов
- Фильтры (в том числе на пьезоэффекте)
- Аналоговые умножители
- Стабилизаторы источников питания
- Микросхемы управления импульсных блоков питания
- Преобразователи сигналов
Цифровые схемы[править | править код]
- Логические элементы
- Триггеры
- Счетчики
- Регистры
- Буферные преобразователи
- Модули памяти
- Шифраторы
- Дешифраторы
- Микроконтроллеры
- (Микро)процессоры (в том числе ЦПУ в компьютере)
- Однокристальные микрокомпьютеры
Аналогово-цифровые схемы[править | править код]
Серии микросхем[править | править код]
Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.
Корпуса микросхем[править | править код]
Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.
Бескорпускная микросхема — это полупроводниковый кристал, предназначенный для монтажа в гибридную микросхему или микросборку.
Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
В российских корпусах растояние между выводами измеряется в милиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем растояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идеинтичные корпуса уже несовместимы.
В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.
Специфические названия микросхем[править | править код]
Из большого количества цифровых микросхем изготавливались процессоры. Фирма Intel первой изготовила микросхему Intel 4004, которая выполняла функции процессора. Такие микросхемы получили название микропроцессор. Микропроцессоры фирмы Intel совершенствовались: Intel 8008, Intel 8080, Intel 8086, Intel 8088 (на основе двух последних микропроцессоров, фирмой IBM, были выпущены первые персональные компьютеры).
Микропроцессор выполняет в основном функции АЛУ (арифметико-логическое устройство), а дополнительные функции связи с периферией выполнялись с помощью специально для этого изготовленных наборов микросхем. Для первых микропроцессоров число микросхем в наборах исчислялось десятками, а сейчас это набор из двух-трех микросхем, который получил термин чипсет.
Микропроцессоры со встроенными контроллерами памяти и вводы-вывода, ОЗУ и ПЗУ, а также другими дополнительными функциями называют микроконтроллерами. eo:Integra cirkvito hu:Integrált áramkör lt:Integrinė mikroschema zh-yue:集成電路