КМОП-сенсор
КМОП-сенсор или фотосенсор, где основным элементом является матрица (фото), выполненная на основе КМОП-технологии.
В КМОП-сенсорах используются полевые транзисторы с изолированным затвором с каналами разной проводимости
История[править | править код]
Точная дата рождения КМОП-сенсора неизвестна. В конце 1960-х гг. многие исследователи отмечали, что структуры КМОП (CMOS) обладают чувствительностью к свету. Однако приборы с зарядовой связью обеспечивали настолько более высокую светочувствительность и качество изображения, что матрицы на КМОП технологии не получили сколько-нибудь заметного развития.
В начале 90-х характеристики КМОП-сенсоров, а также технология производства были значительно улучшены. Прогресс в субмикронной фотолитографии на уровне нанотехнологий позволил применять в КМОП-сенсорах более тонкие соединения. Это привело к увеличению светочувствительности за счет большего процента облучаемой площади каждого фотодиода.
Переворот в технологии КМОП-сенсоров произошел, когда в лаборатории реактивного движения (Jet Propulsion Laboratory — JPL) NASA успешно реализовали Active Pixel Sensors (APS). Теоретические исследования были выполнены еще несколько десятков лет тому назад, но практическое использование активного сенсора отодвинулось до 1993 года. APS добавляет к каждому пикселу транзисторный усилитель для считывания, что даёт возможность преобразовывать заряд в напряжение прямо в пикселе. Это обеспечило также индивидуальный доступ к фотодиодам наподобие реализованного в микросхемах ОЗУ.
В результате к 2008 году КМОП практически стали вытеснять ПЗС.
Принцип работы[править | править код]
- До съёмки подаётся сигнал сброса
- В процессе экспозиции происходит накопление заряда фотодиодом
- В процессе считывания происходит выборка значения напряжения на конденсаторе
Преимущества[править | править код]
- Основное преимущество КМОП технологии — низкое энергопотребление в статическом состоянии. Это позволяет применять такие матрицы в составе энергонезависимых устройств, например, в датчиках движения и системах наблюдения, находящихся большую часть времени в режиме «сна» или «ожидания события».
- Важным преимуществом КМОП сенсора является единство технологии с остальными, цифровыми элементами аппаратуры. Это приводит к возможности объединения на одном кристалле аналоговой и цифровой части, что послужило основой для создания миниатюрных встраиваемых камер для самого разного оборудования и снижения их стоимости.
- С помощью механизма произвольного доступа можно выполнять считывание выбранных групп пикселов. Данная операция получила название кадрированного считывания (англ. windowing readout). Кадрирование позволяет уменьшить размер захваченного изображения и потенциально увеличить скорость считывания по сравнению с ПЗС-сенсорами, поскольку в последних для дальнейшей обработки необходимо выгрузить всю информацию. Появляется возможность применять одну и ту же матрицу в принципиально различных режимах. В частности, быстро считывая только малую часть пикселей, можно обеспечить качественный режим живого просмотра изображения на встроенном в аппарат экране с относительно малым числом пикселей. Можно отсканировать только часть кадра и применить её для отображения на весь экран. Тем самым получить возможность качественной ручной фокусировки. Есть возможность вести репортажную скоростную съёмку с меньшим размером кадра и разрешением.
- В дополнение к усилителю внутри пиксела, усилительные схемы могут быть размещены в любом месте по цепи прохождения сигнала. Это позволяет создавать усилительные каскады и повышать чувствительность в условиях плохого освещения. Возможность изменения коэффициента усиления для каждого цвета улучшает, в частности, балансировку белого
- Меньшая энергоемкость за счет возможности управления каждым пикселем.
Недостатки[править | править код]
- Фотодиод ячейки занимает существенно меньшую площадь элемента матрицы, по сравнению с ПЗС матрицей с полнокадровым переносом. Поэтому ранние матрицы КМОП имели существенно более низкую светочувствительность, чем ПЗС.
- Фотодиод ячейки фотосенсора имеет сравнительно малый размер, величина же получаемого выходного напряжения зависит не только от параметров самого фотодиода, но и от свойств каждого элемента пикселя. Таким образом, у каждого пикселя матрицы оказывается своя собственная характеристическая кривая, и возникает проблема разброса светочувствительности и коэффициента контраста пикселей матрицы. В результе чего первые произведённые КМОП-матрицы имели сравнительно низкое разрешение и высокий уровень так называемого «структурного шума» (англ. pattern noise).
- Наличие на матрице большого по сравнению с фотодиодом объёма электронных элементов создаёт дополнительный нагрев устройства в процессе считывания и приводит к возрастанию теплового шума и вообще выход из строя отдельных пикселей. Однако в настоящее время введен в микросхему режим сброса лишних электронов в яму, что исключает практически перегрев.
См. также[править | править код]
Ссылки[править | править код]
- ↑ CCD vs CMOS: facts and fictions (англ.)