Небесная механика

Материал из свободной русской энциклопедии «Традиция»
Перейти к: навигация, поиск
Icons-mini-icon 2main.png Основная статья: Механика
Классическая механика
\(\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m \vec{v})\)
Второй закон Ньютона
История…

Небе́сная меха́ника — раздел астрономии, изучающий движения тел Солнечной системы в гравитационном поле, применяющий законы механики. Небесная механика занимается предвычислением положения Луны и планет, предсказанием места и времени затмений, в общем, определением реального движения космических тел.[1]

История[править]

Небесная механика в первую очередь изучает поведение тел Солнечной системы — обращение планет вокруг Солнца, спутников вокруг планет, движение комет и других малых небесных тел. Тогда как перемещение далеких звёзд удается заметить, в лучшем случае, за десятилетия и века, движение членов Солнечной системы происходит буквально на глазах — за дни, часы и даже минуты. Поэтому его изучение стало началом современной небесной механики, рождённой трудами И.Кеплера (1571—1630) и И.Ньютона (1643—1727).

Кеплер впервые установил законы планетного движения, а Ньютон вывел из законов Кеплера закон всемирного тяготения и использовал законы движения и тяготения для решения небесно-механических проблем, не охваченных законами Кеплера. После Ньютона прогресс в небесной механике в основном заключался в развитии математической техники для решения уравнений, выражающих законы Ньютона. Таким образом, принципы небесной механики — это «классика» в том смысле, что и сегодня они такие же, как во времена Ньютона.

П. Лаплас в 1798 году впервые ввел термин «Небесная механика». К этому разделу науки он относил теории равновесия и движения твёрдых и жидких тел, составляющих Солнечную систему (и ей подобные) под действием сил тяготения. В русской научной литературе раздел астрономии, посвященный этим проблемам, в течение долгого времени назывался «Теоретическая астрономия». В английской литературе применяется также термин «Динамическая астрономия».[2]

Законы движения Ньютона[править]

Методы и результаты небесной механики базируются на законх Ньютона.

Например:

Согласно этому закону, в системе отсчета, движущейся без ускорения, каждое тело сохраняет состояние покоя или прямолинейного и равномерного движения, если на него не действует внешняя сила. Это противоречит положению аристотелевой физики, утверждающему, что для поддержания движения тела требуется сила. Закон Ньютона говорит, что внешняя сила необходима только для приведения тела в движение, для его остановки или для изменения направления и величины его скорости. Темп изменения скорости тела по величине или направлению называется «ускорением» и свидетельствует о том, что на тело действует сила. Для небесных тел обнаруженное из наблюдений ускорение служит единственным указателем действующей на них внешней силы. Понятие о силе и ускорении позволяет с единой позиции объяснить движение всех тел в природе: от теннисного мяча до планет и галактик.

Поскольку объект, движущийся по искривлённой траектории, испытывает ускорение, было заключено, что Земля на её орбите вокруг Солнца постоянно подвергается влиянию силы, которую назвали «гравитацией». Задача небесной механики состоит в том, чтобы определить действующую на небесное тело силу гравитации и выяснить, как она влияет на его движение.

Если к телу приложена сила, то оно движется ускоренно, причем чем больше сила, тем больше ускорение. Однако одна и та же сила вызывает различное ускорение у разных тел. Характеристикой инертности тела (то есть сопротивления ускорению) служит его «масса», которую в первом приближении можно определить как «количество вещества»: чем больше масса тела, тем меньше его ускорение под действием заданной силы. Таким образом, второй закон Ньютона утверждает, что ускорение тела пропорционально приложенной к нему силе и обратно пропорционально его массе. Если из наблюдений известны ускорение тела и его масса, то, используя этот закон, можно вычислить действующую на тело силу.

Этот закон утверждает, что взаимодействующие тела прилагают друг к другу равные по величине, но противоположно направленные силы. Поэтому в системе из двух тел, влияющих друг на друга одинаковой по величине силой, каждое испытывает ускорение, обратно пропорциональное его массе. Значит, лежащая на прямой между ними точка, удалённая от каждого обратно пропорционально его массе, будет двигаться без ускорения, несмотря на то, что каждое из тел движется ускоренно. Эту точку называют «центром масс»; вокруг неё обращаются звёзды в двойной системе. Если одна из звёзд вдвое массивнее другой, то она движется вдвое ближе к центру масс, чем её соседка.

Законы Кеплера[править]

Icons-mini-icon 2main.png Основная статья: Законы Кеплера

Чтобы изучать движение небесных тел, познакомимся с силой гравитации. Лучше всего это сделать на примере взаимного движения двух тел: компонентов двойной звезды или Земли вокруг Солнца (для простоты предполагая, что другие планеты отсутствуют). К таким системам применимы законы Кеплера. В основе их лежит тот факт, что оба взаимодействующих тела движутся в одной плоскости. Это означает, что и сила гравитации всегда лежит в той же плоскости.

Закон эллипсов. Первый закон Кеплера утверждает, что планеты Солнечной системы движутся по эллипсам, в одном из фокусов которого находится Солнце. Фактически этот закон справедлив только для системы из двух тел, например для двойной звезды. Но и в Солнечной системе он выполняется довольно точно, поскольку на движение каждой планеты в основном влияет массивное Солнце, а все остальные тела влияют несравненно слабее.

Закон площадей. Если отмечать не только положение планеты, но и время, то можно узнать не только форму орбиты, но и характер движения планеты по ней. Оно подчиняется второму закону Кеплера, утверждающему, что линия, соединяющая Солнце и планету (или компоненты двойной звезды), за равные интервалы времени «заметает» равные площади. Например, эта линия между Солнцем и Землей каждые сутки заметает 2·1014 квадратных километров. Из закона площадей следует, что Солнце притягивает планету строго по прямой, соединяющей их центры. Верно и обратное: для любой центральной силы справедлив второй закон Кеплера...

См. также[править]

Ссылки[править]

Навигация[править]