Участник:Миг/Теория оппонентности Э.Геринга

Материал из свободной русской энциклопедии «Традиция»
Перейти к: навигация, поиск
Рис.2 Оппонентный принцип восприятия цвета
Рис.3 Нормализованные спектры цветов ответа колбочками - трёхкомпонентной системы. Это спектры чувствительности S-(М. + L) типов колбочек к определённым длинам волн спектра, данным в нанометрах
Рис. 1a. Принципиальная схема организации цветного зрения (на примере сетчатки цыплёнка).
А. Фоторецептор-колбочка. Свет проходит сквозь хрусталик и до пигментов колбочки, расположенных на её «дне».
Б.1-Б.4 У птиц обычно четыре типа колбочек (они «тетрахроматы»), что позволяют им синтезировать многоцветное изображение, и различать цвета лучше, чем человек. Обработка полученных разностных сигналов, происходящая в нейронной сети сетчатки (десятки типов клеток) обеспечивает возможность ясного различения тысяч цветов и оттенков.

Теория оппонентности Э.Геринга — теория оппонентности цветного зрения определяет механизм цветного зрения, при котором на рецепторном уровне в сетчатке глаза колбочки оппонентно выделяют основные цветовые сигналы S,M.L не в цвете (синий, зелёный, красный) в результате сравнения пар цветов: красный-зелёный, синий-жёлтый, чёрный-белый.

Теория оппонентного цветного зрения — цветной процесс противника — это, когда человеческая зрительная система интерпретирует информацию о цвете, обрабатывая сигналы колбочек и палочек в антагонистической манере. Три типа колбочек (L - «длинноволновых» (красный цвет), М. — «средневолновых» (зелёный цвет) и S — «коротковолновых» (синий цвет), где цвета оппонентно отбираются по наибольшей яркости светимости фотопигментов колбочек) имеют некоторое наложение в длинах волны света, на который они отвечают, что таким образом это более эффективно для зрительной системы выбрать и зафиксировать различия между ответами всех колбочек, а не каждого типа индивидуального ответа колбочки (аддитивный синтез цвета).

Введение[править]

В 1870 году немецкий физиолог Эвальд Геринг сформулировал теорию оппонентную гипотезу цветного зрения, известную также как теория обратного процесса. Учёный опирался не только на существование пяти психологических ощущений, описанных выше, но также и на тот факт, что они действуют в противоположных парах, одновременно дополняя и исключая друг друга. Суть её заключается в том, что некоторые «разные» цвета образуют при смешении промежуточные, например зелёный и синий, жёлтый и красный. Другие пары промежуточных цветов образовать не могут, зато дают новые цвета, например красный и зелёный. Красно-зелёного цвета нет, есть жёлтый. Геринг пришел к выводу, что таких пар цветов три: красный-зелёный, жёлтый-синий, белый- чёрный. Использование четырёх цветов при синтезе цвета даёт больше возможностей, чем использование трёх цветов. Модель Геринга хорошо объяснила «отрицательные» последовательные образы. Модель Геринга обрела не только сторонников, но и противников. Доводы последних сводились в основном к следующему.

  • Во-первых: пять разных типов светоприёмников в глазу — многовато. К тому же, зачем жёлтый рецептор, если жёлтый цвет получается смешением сигналов «красного» и «зелёного»?
  • Во-вторых, почему противоположные жёлтый и синий дают белый цвет, а противоположные красный и зелёный — жёлтый?

Теория Геринга, развитая Харвичем и Джеймсоном, известна как теория обратного процесса. В ней сохраняется три системы рецепторов: красно-зеленые, желто-голубые и черно-белые. Предполагается, что каждая система рецепторов функционирует, как антагонистическая пара. Как и в теории Юнга – Гельмгольца, считается, что каждый из рецепторов (или пар рецепторов) чувствителен к свету волн разной длины, но максимально чувствителен к волнам определенной длины.

Фрагмент из словаря: http://mirslovarei.com/content_psy/CVETNOGO-ZRENIJA-TEORIJA-31621.html - его нужно развить и переписать шире, дать даты:

Позиции этой теории усиливает предположение о том, что стимулирование одной пары не только вызывает возбуждение этой системы рецепторов, но также тормозит действие другой, противоположной системы; красный свет стимулирует красные рецепторы и одновременно тормозит зеленые. Теория хорошо объясняет все явления, включая цветовой контраст и данные о цветовой слепоте, которые являются проблемой для трицепторной теории. В настоящее время эта теория считается лучшим объяснением системы цветного зрения.

В последствие эта теория была принята всеми учёными и в настоящее время все исследования в области цветного зрения успешно решают целый ряд вопросов оппонентного выделения зрительных сигналов колбочками в виде основных цветов не в цвете на рецепторном уровне для отправки их в мозг при фокусировании предметных точек на фокальную поверхность сетчатки глаза.

Сущность теории Э.Геринга[править]

Принципиальная схема цвветного зрения человека, приматов трихроматизма с оппонентным отбором основных цветов предметной точки в условиях ретиномоторной реакции фоторецепторов в блоках колбочек RGB

Теория цвета противника предлагает, что есть три канала противника: красный против зеленого, синий против желтого, и черного против белого (см. рис.2) (последний тип бесцветен и обнаруживает легко-темное изменение, или светимость).[1] Ответы на один цвет канала противника являются антагонистическими к каждому цвету трёх пар цветов (см. рис.2). Таким образом, так как один цвет производит возбудительный эффект, а другой производит запрещающий эффект, цвета противника никогда не воспринимаются одновременно (визуальная система не может быть одновременно возбуждена и запрещена).

В то время как trichromatic теория en:Trichromatic_theory определяет способ, которым сетчатка глаза позволяет визуальной системе обнаруживать цвет с тремя типами колбочек, теория процесса противника (оппонентная теория) является механизмами, которые получают и обрабатывают информацию от колбочек. Хотя трихроматизм (trichromatic) и оппонентные процессы противника, как первоначально думали, имели разногласия, это было в начале, и чтобы это стало понятым требуется принять, что механизмы, ответственные за процесс противника получают сигналы от трех типов колбочек и обрабатывают их на более сложном уровне [2].

Помимо колбочек, которые обнаруживают свет, входящий в глаз, биологическая основа теории противника вовлекает два других типа ячеек: биполярные ячейки, и ячейки нервного узла. Информацию от колбочек передают к биполярным ячейкам en:Bipolar_cell (Биполярная ячейка - тип нейрона, который имеет два расширения и которая как ячейка сетчатки служит, чтобы управлять мускулами и передавать выходной (двигатель) зрительный сигнал в зрительные отделы головного мозга из сетчатки. Они являются ячейками в оппонентном процессе противника, которые преобразовывают информацию от колбочек и передают информацию к ячейкам нервного узла, которые представляют два главных класса ячеек: magnocellular en:Magnocellular_cell, или слои большой ячейки, и parvocellular en:Parvocellular_cell, а также представляют слои маленькой ячейки. Ячейки Parvocellular, или ячейки P, работают в основном с большей частью информации о цвете, и его попадании на сетчатку в виде двух групп: той, которая обрабатывает информацию о различиях между L и М колбочками при отборе, и той, которая обрабатывает различия между колбочками S и объединенным сигналом, а также и от L и от М. колбочек. Первый подтип клеток ответственен за обработку красно-зеленых различий сигналов, и второй тип — за синие-желтые различия. P ячейки также передают информацию об интенсивности света (выбор более ярких цветов), в зависимомости от их восприимчивости в этих областях (см. Участник:Миг/Зрительные отделы головного мозга). [3]

См. также[править]

Примечания[править]

  1. Michael Foster (1891). A Text-book of physiology. Lea Bros. & Co. p. 921. http://books.google.com/?id=Swn8ztLFTdkC&pg=RA1-PA921&dq=hering+red-green+yellow-blue+young-helmholtz+date:0-1923.
  2. Kandel ER, Schwartz JH and Jessell TM, 2000. Principles of Neural Science, 4th ed., McGraw-Hill, New York. pp. 577–80.
  3. http://en.wikipedia.org/wiki/Opponent_process