Аминокислоты

Материал из свободной русской энциклопедии «Традиция»
Перейти к навигации Перейти к поиску

Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Общие химические свойства[править | править код]

1) Аминокислоты могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы -COOH, так и основные свойства, обусловленные аминогруппой -NH2. Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов. Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO-. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот. Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе. 2) Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков и нейлона-6. 3) Изоэлектрической точкой аминокислоты называют pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов. 4) Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Изомерия[править | править код]

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержит два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму и лишь они входят в состав белка. Данную особенность «живых» аминокислот трудно объяснить, так как в реакциях между оптически неактивными веществами или рацематами (из которых, видимо, состояла древняя Земля) L и D-формы образуются в одинаковых количествах. Креационисты, естественно, могут объяснить это божьим умыслом, остальным же приходится считать, что это — просто результат случайного стечения обстоятельств: самая первая молекула, с которой смог начаться матричный синтез, была оптически активной, а других пригодных молекул почему-то не образовалось. Оптические изомеры аминокислот претерпевают медленную самопроизвольную неферментативную рацемизацию. Например, в белке дентине (входит в состав зубов) L-аспартат переходит в D-форму со скоростью 0,1% в год, что может быть использовано для определения возраста биологических объектов.

Альфа-аминокислоты белков[править | править код]

См. статью: Белки

В процессе биосинтеза белка в полипептидную цепь включаются 20 важнейших α-аминокислот, кодируемых генетическим кодом.

Помимо этих аминокислот, называемых стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, являющиеся производными стандартных. В последнее время к стандартным аминокислотам иногда причисляют селеноцистеин (Sec, U).

Классификация стандартных аминокислот по R-группам[править | править код]

Классификация стандартных аминокислот по функциональным группам[править | править код]

Родственные соединения[править | править код]

В медицине некоторые вещества, способные выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами.

Ссылки[править | править код]

eo:Aminoacido fo:Aminosýra hu:Aminosav ka:ამინომჟავა ku:Tirşiyên emînî lt:Aminorūgštis lv:Aminoskābe nn:Aminosyre nov:Amino-aside om:Amino Acid su:Asam amino