Бесконечность

Материал из свободной русской энциклопедии «Традиция»
Перейти к навигации Перейти к поиску

Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, физика, философия, теология или повседневная жизнь.

Понятие бесконечности в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.

Также бесконечность неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:

«… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений не задали, всегда потенциально можно поделить на большее число.» (Физика III, 6)

Вообще Аристотель сделал большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную (под актуальной подразумевая реальность существования бесконечных вещей) и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников представления о ней:

  • время
  • разделение величин
  • неиссякаемость творящей природы
  • само понятие границы, толкающее за её пределы
  • мышление, которое неостановимо

Далее бесконечность получила развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии это атрибут пространства и времени.

В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие (биекцию), а целые числа включены в действительные. Таким образом, в этом случае одно кардинальное число (равно мощности множества) «бесконечнее» другого. Основоположником этих понятий был немецкий математик Георг Кантор.

В матанализе ко множеству действительных чисел добавляются два символа, плюс и минус бесконечность, применяющиеся для определения граничных значений и сходимости. Сто́ит отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы (как и многие другие) были введены для сокращения записи более длинных выражений.

Современная физика вплотную подходит к отрицаемой Аристотелем актуальности бесконечности — то есть доступности в реальном мире, а не только в абстрактном. Например, есть понятие сингулярности, тесно связанное с чёрными дырами и теорией большого взрыва: это точка в пространстве—времени, в которой масса в бесконечно малом объёме сосредоточена с бесконечной плотностью. Уже есть солидные косвенные доказательства существования чёрных дыр, хотя теория большого взрыва находится ещё в стадии разработки.

Цитаты[править | править код]

Эйнштейн: «Две вещи действительно бесконечны: Вселенная и человеческая глупость. Впрочем, насчет Вселенной я не уверен».

См. также[править | править код]

Ссылки[править | править код]