Внутреннее отражение электромагнитных волн
Вну́треннее отраже́ние электромагнитных волн — явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает на границу раздела из среды с бо́льшим коэффициентом преломления.
Виды внутреннеего отражения[править | править код]
- Полное внутреннее отражение электромагнитных волн — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
- Неполное внутреннее отражение электромагнитных волн — внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.
Этот оптический феномен наблюдается для лучей широкого спектра электромагнитного излучения включая и спектр Рентгеновских лучей.
В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.
В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.
Пример[править | править код]
На примере двух монохроматических лучей обозначенных зелёным и красным цветами, падающих на границу раздела двух сред. Лучи проходят в зоне более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления , граничащей с менее плотной (обзначена светло-голубым цветом) средой с — .
Красный луч проходит: , то есть он раздваивается, преломляется и отражается. Преломляется часть луча под углом:
- Зелёный луч падает и отражается:
Полное внутреннее отражение в природе и технике[править | править код]
Фата-моргана, эффекты миража, например иллюзия мокрой дороги при летней жаре. Здесь отражения возникают из-за полного отражения между слоями воздуха с разной температурой.
Яркий блеск многих природных кристаллов, а в особенности — огранённых драгоценных и полудрагоценных каменй объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.
Блеск алмазов, выделяющий их из прочих драгоценных камней, также определяется этим феноменом. Из-за высокого коэффициента преломления (n ≈ 2) алмаза оказывается большим и число внутренних отражений, которые претерпевает луч света с меньшими потерями энергии, по сравнению со стеклом и другими материалами с меньшим показателем преломления. Полное внутреннее отражение звуковых волн в толще океана, связанное с изменениями свойств воды с глубиной, приводит к распространению некоторых, особенно сверхнизкочастотных звуков на тысячи километров.[1]
Полное внутреннее отражение можно наблюдать, если смотреть из-под воды на поверхность: при определенных углах на границе раздела наблюдаеться не внешняя часть (то, что в воздухе), а видно зеркальное отражение объектов, которые находятся в воде.
Световод[править | править код]
Эффект полного внутреннего отражения использвуется в световодах.Осевая часть волокна создаётся из стекла с высоким показателем преломления и погружается в оптически менее плотную среду (пластиковая облочка волокна, специальная жидкость, воздух). Такие световоды используються для построения оптоволоконных кабелей
Отражение рентгеновских лучей[править | править код]
При рентгеновском излучении согласно общей формуле значений коэффициента преломления: вытекает, что вакуум — оптически более плотная среда, чем любое вещество. Значения коэффициента прохождении рентгеновских лучей лежат в области между и и зависят от квантовой энергии излучения, констант кристаллической решётки и плотности вещества.
При небольших углах падения, наблюдается эффект скольжения, преломления рентгеновских лучей с отражением под углом, равным углу падения (θ). Углы скольжения для «жёстких» рентгеновских лучей составляют доли градуса, для «мягких» — примерно 10-20 градусов.[3][4]
Преломление рентгеновских лучей при скользящем падении было впервые сформулировано русским ученым М. А. Кумаховым, разработавшим рентгеновское зеркало, и теоретически обосновано Артуром Комптоном в 1923 году.
Другие волновые явления[править | править код]
Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.
Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов.[5]
Неполное внутреннее отражение электромагнитных волн[править | править код]
Светоделительная призма[править | править код]
Непосредственно за первой граничной поверхностью, то есть на расстоянии максимум, равной длине волны света, вторая граничная поверхность имеет тот же коэффициент преломления n1. Электромагнитная волна света проникает через полосу с коэффициентом преломления n2 и попадает во вторую граничную поверхность с коэффициентом преломления n1, но с меньшим значением энергии. Наблюдается раздвоение луча света, часть которого проникла в зону с коэффициентом преломления n2. В конечном результате луч раздваивается : часть распространяется дальше в первоначальном направлении, в то время как другая часть отражается. Потеря интенсивности в среде n2 проходит экспоненциально по формуле:
См. также[править | править код]
- Волноводная оптика
- Оптическое волокно (версия Миг)
- Оптические материалы
- Рентгеновская оптика и монокристаллы
Сноски[править | править код]
- ↑ http://www.akin.ru/r_rf99_02_18359.htm
- ↑ https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D0%BE%D0%BA%D0%BE%D0%BD%D0%BD%D0%BE-%D0%BE%D0%BF%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%B2%D1%8F%D0%B7%D1%8C
- ↑ http://dssplab.karelia.ru/sources/BOOK/glava1/01.html
- ↑ http://www.issep.rssi.ru/pdf/0110_095.pdf
- ↑ Нейтронная оптика — статья из Большой советской энциклопедии.