GPCR
Экстерорецепторы, сопряженные с G белком, (англ. G protein-coupled receptors, GPCRs), также известные как семиспиральные экстерорецепторы, составляют большое семейство трансмембранных экстерорецепторов. GPCR выполняют функцию активаторов внутриклеточных путей передачи сигнала, приводящими в итоге к клеточному ответу. Рецепторы этого семейства обнаружены только в клетках эукариот: у дрожжей, растений, хоанофлагеллят[1] и животных. Лиганды, которые связываются и активируют эти рецепторы, включают гормоны, нейромедиаторы, светочувствительные вещества, пахучие вещества, феромоны и варьируют в своих размерах от небольших молекул и пептидов до белков. Нарушение работы GPCR приводит к возникновению множества различных заболеваний, а сами рецепторы являются мишенью до 40% выпускаемых лекарств.[2]
Классификация[править | править код]
Семейство GPCR подразделяют на 6 классов на основании гомологии их аминокислотных последовательностей и функционального сходства[3][4][5][6]:
- Класс A (или 1) (Родопсиноподобные экстерорецепторы)
- Класс B (или 2) (Рецепторы секретинового семейства)
- Класс C (или 3) (Метаботропные глутаматные рецепторы)
- Класс D (или 4) (Рецепторы феромонов спаривания грибков)
- Класс E (или 5) (Рецепторы цАМФ)
- Класс F (или 6) (Frizzled/Smoothened)
Класс A является очень большим, поэтому далее поделен на 19 подклассов (A1-A19)[7]. Кроме того, недавно была предложена альтернативная система классификации (GRAFS)[8].
Человеческий геном кодирует порядка 350 рецепторов, связанных с G-белками, которые связывают гормоны, факторы роста и другие эндогенные лиганды. Функция около 150 рецепторов, обнаруженных в геноме человека, остаётся невыясненной.
Физиологическая роль[править | править код]
Рецепторы, связанные с G-белками вовлечены в широкий круг физиологических процессов. Вот некоторые примеры:
- зрение: опсины используют реакцию фотоизомеризации для превращения электромагнитного излучения в клеточные сигналы. Родопсин, например, использует превращение 11-цис-ретиналя в полностью-транс-ретиналь для этой цели
- обоняние: рецепторы обонятельного эпителия связывают пахучие вещества (обонятельные рецепторы) и феромоны (вомероназальные рецепторы)
- регуляция поведения и настроения: рецепторы в мозге млекопитающих связывают несколько различных нейромедиаторов, включая серотонин, дофамин, гамма-аминомасляную кислоту (ГАМК) и глутамат
- регуляция активности иммунной системы и воспаления: хемокиновые рецепторы связывают лиганды, которые осуществляют межклеточную коммуникацию в иммунной системе; рецепторы, такие как гистаминовый рецептор, связывают медиаторы воспаления и вовлекают определенные типы клеток в воспалительный процесс
- функционирование вегетативной нервной системы: как симпатическая, так и парасимпатическая нервная система регулируются посредством рецепторов, связанных с G-белками, ответственных за многие автоматические функции организма, такие как поддержание кровяного давления, частоты сердечных сокращений и пищеварительных процессов
Структура рецептора[править | править код]
Семейство рецепторов, связанных с G-белками — это семейство интегральных мембранных белков, которые содержат семь доменов, пронизывающих мембрану (трансмембранных спиралей). Внеклеточная часть состоит из петель, в которых среди прочих остатков содержатся два высококонсервативных остатка цистеина, образующих дисульфидную связь, что стабилизирует структуру рецептора.
Ранние структурные модели GPCR были основаны на их некоторой схожести с бактериородопсином, для которого структура была определена как методом электронной дифракции (Шаблон:PDB, Шаблон:PDB2),[9][10] так и рентгеноструктурным анализом (Шаблон:PDB2).[11] В 2000 году была получена структура первого GPCR млекопитающих — бычьего родопсина (Шаблон:PDB2).[12] Оказалось, что хотя основная черта — семь трансмембранных спиралей — сохранена, относительное их расположение заметно отличается от такового в бактериородопсине. В 2007 впервые была получена структура GPCR человека — β2-адренэргического рецептора (Шаблон:PDB2, Шаблон:PDB2),[13] (Шаблон:PDB2).[14][15] Структура этого рецептора оказалась весьма сходной со структурой зрительного родопсина быка по взаимному расположению спиралей. Однако конформация второй внеклеточной петли в этих структурах различается коренным образом. А поскольку эта петля является «крышкой», закрывающей сверху сайт связывания лиганда, то различия в её конформации подчеркивают трудности построения моделей рецепторов, связанных с G-белками, основываясь лишь на структуре зрительного родопсина. В 2008 году была получена структура опсина, очищенного от родопсина, с разрешением 2,5 ангстрема.
Механизм[править | править код]
Рецепторы, сопряжённые с G-белком, активируются внешним сигналом в виде лиганда. Это создаёт конформационные изменения в рецепторе, вызывающие активацию G-белка. Дальнейший эффект зависит от типа G-белка.
Связывание лиганда[править | править код]
Семейство GPCR включает рецепторы органов чувств (реагирующие, например, на свет или молекулы пахучих веществ); аденозина, бомбезина, брадикинина, эндотелина, γ-аминомасляной кислоты (ГАМК), фактора роста гепатоцитов, меланокортинов, нейропептида Y, опиоидных пептидов, опсинов, соматостатина, тахикининов и вазопрессина; биогенных аминов (например, дофамина, адреналина, норадреналина, гистамина, глутамата, глюкагона, ацетилхолина и серотонина); хемокинов; липидных медиаторов воспаления (напр., простагландинов, тромбоксанов, простациклинов, фактора активации лейкоцитов и лейкотриенов); и пептидных гормонов (напр., кальцитонина, C5a анафилотоксина, фолликулостимулирующего гормона (ФСГ), гонадолиберина, нейрокинина, тиролиберина и окситоцина). Существует также GPCR, лиганды и стимулы для которых ещё не определены, их называют рецепторами-сиротами, или орфановыми рецепторами (orphan receptors).
В то время как в других типах изученных рецепторов лиганды связываются на внешней стороне мембраны, лиганды GPCR обычно связываются в трансмембранном домене.
Конформационные изменения[править | править код]
Передача сигнала рецептором через мембрану во всех деталях ещё не понята. Известно, что неактивный G-белок связан с рецептором в его неактивном состоянии. Как только лиганд распознан, рецептор меняет конформацию и таким образом механически активирует G-белок, который отсоединяется от рецептора. Теперь рецептор может или активировать следующий G-белок, или переключиться обратно в своё неактивное состояние. Хотя это и слишком упрощённые представления, они достаточны для описания основных событий.
Считается, что молекула рецептора существует в конформационном равновесии между активным и неактивным состояниями[16]. Связывание лиганда может сдвинуть равновесие в сторону активного состояния[17]. Существуют три типа лигандов: агонисты смещают это равновесие в сторону активного состояния; обратные агонисты — в сторону неактивного состояния; и нейтральные антагонисты не влияют на равновесие. Однако в настоящее время еще точно не известно, чем же активное и неактивное состояние отличаются друг от друга.
Активация G-белка[править | править код]
Если рецептор в активном состоянии встречается с G-белком, то может активировать его. Активированные G-белки связаны с ГТФ.
Дальнейшая передача сигнала зависит от типа G-белка. Фермент аденилатциклаза является одним из клеточных белков, которые могут регулироваться G-белком, а именно, его активированной субъединицей Gs. Активация аденилатциклазы начинается, когда та связывается с субъединицей активированного G-белка, а заканчивается, когда G-белок гидролизует ГТФ и возвращается в ГДФ-связанное состояние, при котором все его субъединицы соединены в единую молекулу с четвертичной структурой.
Регуляция[править | править код]
Рецепторы, связанные с G-белками теряют чувствительность после длительной экспозиции со своими лигандами. Различают две формы потери чувствительности (десенситизации): 1) гомологичную, при которой сокращается число активированных рецепторов; и 2) гетерологическую, при которой активированный рецептор вызывает сокращение числа рецепторов других типов. Ключевой реакцией подобного сокращения числа рецепторов является фосфорилирование внутриклеточного (или, что то же, цитоплазматического) домена рецептора протеинкиназами.
Фосфорилирование цАМФ-зависимыми протеинкиназами[править | править код]
цАМФ-зависимые киназы (протеинкиназа А) активируются цепью сигналов с G-белка (который был активирован рецептором) посредством аденилатциклазы и цАМФ. По механизму обратной связи эти активированные киназы фосфорилируют рецептор. Чем дольше рецептор остаётся активным, тем больше киназ активируется, тем больше рецепторов фосфорилируется.
Фосфорилирование GRK-киназами[править | править код]
Киназы рецепторов, связанных с G-белками (GRK-киназы) — это протеинкиназы, фосфорилирующие лишь активные рецепторы, связанные с G-белками.
Фосфорилирование рецептора может иметь такие последствия:
- Транслокация: Рецептор, заодно с частью окружающей его мембраны, захватывается внутрь клетки, где дефосфорилируется при кислых значениях внутри везикул среды[18] и возвращается обратно. Этот механизм используется для регуляции при долговременном воздействии, например, гормонов, позволяя возвращение чувствительности (ресенситизацию) после её потери. Иначе, рецептор может претерпеть лизосомальное расщепление или остаться интернализованным, участвуя, как предполагается, в инициации сигналов, природа которых зависит от внутриклеточного расположения интернализованной везикулы[19].
- Связывание аррестина: Фосфорилированный рецептор может связаться с молекулами аррестина, которые не допустят его связывания с G-белками (и активации их), эффективно выключая рецептор на короткое время. Этот механизм используется, например, в родопсине клеток сетчатки для компенсации воздействия яркого света.
Олигомеризация рецепторов[править | править код]
Считается общепринятым, что рецепторы, связанные с G-белками могут образовывать гомо- и/или гетеродимеры, а возможно и более сложные олигомерные структуры. Исследования олигомеризации GPCR активно ведутся в настоящее время.
Растения[править | править код]
Рецептором, связанным с G-белками для фитогормона (абсцизовой кислоты) является GCR2, который был выявлен в Arabidopsis thaliana. Другим вероятным рецептором является GCR1, но лиганд для него ещё не обнаружен[20].
См.также[править | править код]
- Адренорецепторы
- Бета-2 адренорецептор
- Передача сигнала в клетке
- Экстерорецепторы
- Сетчатка
- Фоточувствительные нервные ячейки
- Родопсин
Примечания[править | править код]
- ↑ King N, Hittinger CT, Carroll SB (2003). "Evolution of key cell signaling and adhesion protein families predates animal origins". Science 301 (5631): 361–3. DOI:10.1126/science.1083853. PMID 12869759.
- ↑ Filmore, David (2004). "It's a GPCR world". Modern Drug Discovery 2004 (November): 24–28.
- ↑ Attwood TK, Findlay JB (1994). "Fingerprinting G-protein-coupled receptors". Protein Eng 7 (2): 195–203. DOI:10.1093/protein/7.2.195. PMID 8170923.
- ↑ Kolakowski LF Jr (1994). "GCRDb: a G-protein-coupled receptor database". Receptors Channels 2 (1): 1–7. PMID 8081729.
- ↑ Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005). "International Union of Pharmacology. XLVI. G protein-coupled receptor list". Pharmacol Rev 57 (2): 279–88. DOI:10.1124/pr.57.2.5. PMID 15914470.
- ↑ InterPro
- ↑ Joost P, Methner A (2002). "Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands". Genome Biol 3 (11): research0063.1–0063.16. DOI:10.1186/gb-2002-3-11-research0063. PMID 12429062.
- ↑ Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB (2006). "Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse". Genomics 88 (3): 263–73. DOI:10.1016/j.ygeno.2006.04.001. PMID 16753280.
- ↑ Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996). "Electron-crystallographic refinement of the structure of bacteriorhodopsin". J. Mol. Biol. 259 (3): 393–421. DOI:10.1006/jmbi.1996.0328. PMID 8676377.
- ↑ Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K, Murata K, Hirai T, Fujiyoshi Y (1997). "Surface of bacteriorhodopsin revealed by high-resolution electron crystallography". Nature 389 (6647): 206–11. DOI:10.1038/38323. PMID 9296502.
- ↑ Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997). "X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases". Science 277 (5332): 1676–81. DOI:10.1126/science.277.5332.1676. PMID 9287223.
- ↑ Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000). "Crystal structure of rhodopsin: A G protein-coupled receptor.". Science 289 (5480): 739–45. DOI:10.1126/science.289.5480.739. PMID 10926528.
- ↑ Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007). "Crystal structure of the human β2-adrenergic G-protein-coupled receptor". Nature 450 (7168): 383–7. DOI:10.1038/nature06325. PMID 17952055.
- ↑ Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007). "High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor". Science 318 (5854): 1258–65. DOI:10.1126/science.1150577. PMID 17962520.
- ↑ Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007). "GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function". Science 318 (5854): 1266–73. DOI:10.1126/science.1150609. PMID 17962519.
- ↑ Rubenstein, Lester A. and Lanzara, Richard G. (1998). "Activation of G protein-coupled receptors entails cysteine modulation of agonist binding". Journal of Molecular Structure (Theochem) 430: 57–71.
- ↑ http://www.bio-balance.com/
- ↑ Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ (1997). "The role of sequestration in G protein-coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification". J. Biol. Chem. 272 (1): 5–8. DOI:10.1074/jbc.272.1.5. PMID 8995214.
- ↑ Tan CM, Brady AE, Nickols HH, Wang Q, Limbird LE (2004). "Membrane trafficking of G protein-coupled receptors". Annu. Rev. Pharmacol. Toxicol. 44: 559–609. DOI:10.1146/annurev.pharmtox.44.101802.121558. PMID 14744258.
- ↑ Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007). "A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid". Science 315 (5819): 712–6. DOI:10.1126/science.1135882. PMID 17347412.
Внешние ссылки[править | править код]
- Wikipedia:MeSH D12.776#MeSH D12.776.543.750.100 --- receptors.2C g-protein-coupled
- "A phylogenetic tree of all human GPCRs" (PDF). Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003). "The G protein-coupled receptor repertoires of human and mouse". Proc Natl Acad Sci USA 100 (8): 4903–8. DOI:10.1073/pnas.0230374100. PMID 12679517.. Retrieved 2008-08-11.
- "GPCR Database". IUPHAR Database. International Union of Basic and Clinical Pharmacology. Retrieved 2008-08-11.
- Vriend G, Horn F (2006-06-29). "GPCRDB: Information system for G protein-coupled receptors (GPCRs)". Molecular Class-Specific Information System (MCSIS) project. Retrieved 2008-08-11.
- "GPCR Reference Library". Retrieved 2008-08-11.
Reference for molecular and mathematical models for the initial receptor response