Длина волны де Бройля
Длина волны де Бройля — длина волны, которая проявляется у всех частиц в квантовой механике согласно корпускулярно-волновому дуализму, и определяющая плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. Длина волны де Бройля обратно пропорциональна импульсу частицы.
Определение[править | править код]
В 1924 году французский физик Луи де Бройль предположил, что для частиц справедливы те же самые соотношения, что и для фотона: [1]
где
Отсюда следует определение длины волны де Бройля через постоянную Планка и релятивистский импульс частицы:
В отличие от фотонов, которые всегда движутся с одной и той же скоростью, равной скорости света, у частиц согласно специальной теории относительности импульсы зависят от массы
Вывод формулы для длины волны де Бройля[править | править код]
Существует несколько объяснений тому, что в экспериментах с частицами проявляется длина волны де Бройля. Однако не все эти объяснения могут быть представлены в математической форме, либо они не дают физического механизма, обосновывающего формулу (1).
Волны внутри частиц[править | править код]
При возбуждении одних частиц другими в ходе эксперимента, или при столкновениях частиц с измерительными приборами, в частицах могут возникать внутренние стоячие волны. Это могут быть электромагнитные волны либо волны, связанные с сильным взаимодействием частиц, с сильной гравитацией в гравитационной модели сильного взаимодействия, и т.д. С помощью преобразований Лоренца можно пересчитать длину волны этих внутренних колебаний в длину волны, которую обнаруживает внешний наблюдатель, проводящий эксперимент с движущимися частицами. Расчёт даёт формулу для длины волны де Бройля, [2] [3] [4]
а также скорость распространения волны де Бройля:
Таким образом, выявляются основные черты, связанные с корпускулярно-волновым дуализмом – если энергия внутренних стоячих волн в частицах достигает энергии покоя этих частиц, то длина волны де Бройля вычисляется так же, как у фотонов при соответствующем импульсе. Если же энергия
где
Очевидно, что в экспериментах в основном проявляется длина волны де Бройля (1), как граничная и наименьшая величина для длины волны (2). В то же время эксперименты со множеством частиц могут не дать однозначного значения для длины волны
Кроме длины волны де Бройля, преобразования Лоренца дают ещё одну длину волны и её период:
Эта длина волны испытывает лоренцевское сокращение по сравнению с длиной волны
Полученная длина волны есть не что иное, как комптоновская длина волны в эффекте Комптона, с поправкой на фактор Лоренца.
В представленной картине появление волны де Бройля и корпускулярно-волновой дуализм трактуются как чисто релятивистский эффект, возникающий как следствие лоренцевского преобразования стоячей волны, движущейся вместе с частицей. При этом, поскольку длина волны де Бройля ведёт себя подобно длине волны фотона с соответствующим импульсом, что объединяет частицы и волны, волны де Бройля считаются волнами вероятности, связанными с волновой функцией. В квантовой механике принимается, что квадрат амплитуды волновой функции в данной точке в координатном представлении задаёт плотность вероятности обнаружения частицы в этой точке.
У частиц электромагнитный потенциал спадает обратно пропорционально квадрату расстояния от частицы до точки наблюдения, потенциал сильного взаимодействия в гравитационной модели сильного взаимодействия ведёт себя аналогично. При возникновении внутренних колебаний в частице колеблется и потенциал поля вокруг частицы, и следовательно, амплитуда волны де Бройля быстро растёт при приближении к частице. Это как раз соответствует тому, что частица с большей вероятностью находится там, где больше амплитуда её волновой функции. Это верно для чистого состояния, например, для одной частицы. Если же имеется смешанное состояние, когда в учёт берутся волновые функции нескольких взаимодействующих частиц, трактовка, связывающая волновые функции и вероятности становится не такой точной. В этом случае волновая функция скорее будет отражать амплитуду суммарной волны де Бройля, связанную с амплитудой суммарного волнового поля потенциалов частиц.
Преобразования Лоренца для определения длины волны де Бройля были использованы также в статье. [5]
Объяснение волны де Бройля через стоячие волны внутри частиц описывается также в статье. [6] В отличие от этого, в статье [7] предполагается, что внутри частицы имеется круговая электромагнитная волна. Согласно заключению в статье, [8] за пределами движущейся частицы должна быть волна де Бройля с амплитудной модуляцией.
Электроны в атомах[править | править код]
Движение электронов в атомах происходит путём их вращения вокруг атомных ядер. В субстанциональной модели электроны представляют собой облака в форме дисков. Это является результатом действия четырёх приблизительно одинаковых по величине сил, возникающих: 1) от притяжения электрона к ядру за счёт сильной гравитации и кулоновского притяжения зарядов электрона и ядра, 2) от отталкивания заряженного вещества электрона самого от себя, 3) от убегания вещества электрона от ядра за счёт вращения, что учитывается центростремительной силой. В атоме водорода электрон в состоянии с минимальной энергией может быть моделирован вращающимся диском, внутренний край которого имеет радиус
Если предположить, что на орбите электрона в атоме укладывается
Это соответствует постулату Боровской модели атома, по которому момент импульса в атоме водорода квантуется и пропорционален номеру орбиты
Однако энергия возбуждений в веществе электронов в атомах на стационарных орбитах как правило не равна энергии покоя самих электронов, и потому пространственное квантование волны де Бройля вдоль орбиты в форме (3) следует объяснять другим способом. В частности было показано, что на стационарных орбитах в распредёлённом по пространству веществе электрона осуществляется равенство потока кинетической энергии вещества и суммы потоков энергии от электромагнитного поля и поля сильной гравитации. [3]
В этом случае потоки энергии полей не тормозят и не раскручивают вещество электрона. Это даёт равновесные круговые и эллиптические орбиты электрона в атоме. При этом оказывается, что моменты импульса квантуются пропорционально постоянной Планка, что в первом приближении приводит к соотношению (3).
Кроме этого, при переходах с одной орбиты на другую, более близкую к ядру, электроны излучают фотоны, которые уносят из атома энергию
При переходе электрона из одного стационарного состояния в другое в его веществе меняются кольцевой поток кинетической энергии и внутренние потоки полей, а также их импульсы и энергии. Синхронно с этим меняется энергия электрона в поле ядра, излучается энергия фотона, увеличивается импульс электрона и уменьшается длина волны де Бройля в (3). Таким образом, излучение фотона как кванта электромагнитного поля из атома сопровождается изменением энергии потоков поля в веществе электрона, оба процесса связаны с энергиями полей и с изменением момента импульса электрона, пропорционального
Другие модели[править | править код]
Ссылки[править | править код]
- ↑ L. de Broglie, Recherches sur la théorie des quanta (Researches on the quantum theory), Thesis (Paris), 1924; L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925).
- ↑ Федосин С.Г. Физика и философия подобия от преонов до метагалактик, Пермь: Стиль-МГ, 1999, 544 стр., Табл.66, Ил.93, Библ. 377 назв. ISBN 5-8131-0012-1.
- ↑ Перейти обратно: а б в Федосин С. Г. Физические теории и бесконечная вложенность материи, Пермь, 2009, 844 стр., Табл. 21, Ил.41, Библ. 289 назв. ISBN 978-5-9901951-1-0.
- ↑ Fedosin S.G. The radius of the proton in the self-consistent model. Hadronic Journal, 2012, Vol. 35, No. 4, P. 349 – 363; статья на русском языке: Радиус протона в самосогласованной модели.
- ↑ Masanori Sato and Hiroki Sato. Interpretation of De Broglie Waves: At What Time Does a Massive Particle Obtain the Properties of a Wave? Physics Essays. 2012, Vol. 25, P. 150-156.
- ↑ J. X. Zheng-Johansson and Per-Ivar Johansson. Developing de Broglie Wave. Progress in physics. 2006, Vol. 4, P.32-35.
- ↑ Malik Mohammad Asif. de Broglie wave and electromagnetic travelling wave model of electron and other charged particles. Physics Essays. 2014, Vol. 27, P. 146-164.
- ↑ J. Domínguez-Montes and E. L. Eisman, Representative model of particle–wave duality and entanglement based on De Broglie's interpretation. Physics Essays. 2012, Vol. 25, P. 215-220.