Функция светимости

В функции светимости или функции светящейся эффективности описывается средняя спектральная чувствительность человеческого зрительного восприятия яркости. Оно основано на субъективных ощущениях, когда пара разноцветных огней ярче, позволяющих описать относительную чувствительность к свету различных длин волн. Нельзя считать совершенно точными в каждом случае, но это очень хорошее представление визуальной чувствительности человеческого глаза и оно ценно в качестве основы для экспериментальных целей.
Человеческий глаз содержит фоторецепторы называемые колбочками для среднего — высоко-яркостного цветового зрения с учетом пиков S,M,L (максимальных значений кривых) (см. рис. 14a) с длинами волн (коротких длин волн, синих-S, 420-440 нм), (средних — зелёных-М, 530-540 нм), и (длинных — красных-L, 560-580 нм) диапазонах. Есть также лучи низкой яркости или имеют низкий яркостный контраст — соотношение яркости зрительных стимулов, находящихся в одном поле восприятия c колбочками.
При этом следует отличать понятия яркость света (физическая величина) от яркости цвета (биологическая величина). Яркость цвета связана с нашим личным восприятием лучей колбочками S,M,L (синих, зелёных, красных) с пиком длиной волны более 496 нм, которые нашим глазом воспринимаются как очень яркие, хотя они по энергетике менее слабые. У них частота колебаний волн более низкая. (Поэтому мы не видим Уф лучи, рентгеновские лучи и т.д. Природа выбрала свой вариант приспособления, выживаемости в окружающей нас среде). Например, синие, УФ волны с длинами волн менее 496 нм для глаза являются не яркими, и даже не цветными! Хотя они более мощные. Поэтому при решении задачи на различение этих "монохромных лучей" "ночного видения" служат экстерорецепторы, называемые палочками, которые имеют пик чувствительности вокруг 496 нм и менее.
CIE функции светимости
Подробности[править | править код]

Есть две функции светимости в общем пользовании. Для повседневного уровня освещенности, фотопическая функция en:Photopic_vision светимости наиболее близкая чувствительность для человеческого глаза. Для низкого уровня освещенности, чувствительность человеческого глаза претерпевает изменения в сторону scotopic функции, кривая (зелёная). Для Кривой дневного видения (чёрный цвет) CIE использовали стандартную Кривую в цветовом пространстве CIE 1931.
Световой поток (или видимая энергия) источника света определяется фотопической функцией светимости. Следующая формула позволяет вычислить суммарный световой поток источника света.
где:
- <5math>\overline{y}(\lambda)</math> (также известен как
) — это стандартная функция светимости (безразмерная).
Формально интеграл — это внутренний продукт светимости функции светового спектра. На практике, интеграл заменяется на сумму более дискретных длин волн, для которых значения функции светимости табулированные. CIE распределяет стандартные таблицы с фотометрическими значениями функции по 5 нм с интервалом от 380 нм до 780 нм.
Стандартные функции светимости нормализуются пиковыми значениями к единице при 555 нм (см. световой коэффициент) en:Luminous_efficacy#Efficacy_and_efficiency. Значение константы перед интегралом округляется до 683 лм/Вт. Небольшой избыток дробного значения происходит от незначительного несоответствия между определением lumen и пиком светимости функции. Просвет определяется единством лучистой энергии 1/683 ватт на частоте 540 Тгц, что соответствует стандартной воздушной волне 555.016 нм, а не 555 нм, пика Кривой светимости. Значение
Усовершенствования стандарта[править | править код]
CIE 1924 фотопический (дневное освещение) с функцией
Scotopic светимости[править | править код]
Для очень низких уровней интенсивности (scotopic vision) (скотопик светимости), чувствительность глаз опосредуется палочками, но не колбочками и смещается в сторону фиолетового цвета, достигая максимума около 507 нм для молодых глаз; чувствительность эквивалентна 1699 lm/W [11] или 1700 лм/Вт [12] на этом пике кривой.
Стандартный scotopic функции светимости или V^\prime(\lambda) был принят CIE в 1951 году, на основе измерений Wald (1945) и Кроуфорд (1949). [13]
Цветовая слепота[править | править код]

Дальтонизм изменения чувствительности глаза зависит от длины волны излучения. Для людей с протанопией пик глаз реагирует смещением в сторону коротковолновой части спектра (приблизительно 540 нм), а для людей, страдающих дейтеранопией, есть небольшой сдвиг пика спектра примерно до 560 нм.[14] Люди с протанопией практически не чувствительнык свету с длинами длин волн более 670 нм.
Большинство млекопитающих, в том числе и другие приматы имеют одинаковые функции светимости как у людей с протанопией. Это позволяет изучать ночную жизнь животных, освещая сцену с длинноволновыйм красным светом, который они не могут видеть.[15]
Для пожилых людей с нормальным цветовым зрением, хрусталик может стать слегка желтоватый из-за катаракты, которая движется в сторону максимальной чувствительности в красной части спектра и сужает диапазон воспринимаемых длин волн.[Цитата необходима].
Замечание[править | править код]
При рассмотрении вопросов визуального цветного зрения следует различать и отличать понятия яркость света (физическая величина) от яркости цвета (биологическая величина).
Яркость цвета связана с цветным и чёрно-белым зрением, нашим личным, биологическим восприятием световых видимых более слабых лучей (электромагнитных колебаний) (см. дневное зрение), с колбочками S,M,L, (синих, зелёных, красных) с пиком длиной волны более 496 нм, которые нашим глазом воспринимаются как очень яркие (вопросы приспосабливаемости и выживания живых организмомв), хотя они физически по энергетике более слабые. У них частота колебаний волн более низкая, чем у синих, УФ лучей (длина волн менее 496нм). Дневной образ жизни животных связан с окружающей средой обитания, где в основнё
ом все объекты освещены дневными лучами света, а прямой и отражённый видимый спектр света содержит основные видимые лучи S,M,L,, которые более слабые, но биологически воспринимаются как наиболее яркие. , поэтоиуэщ0 мы не видим Уф лучи, рентгеновские лучи и т.д. Природа выбрала свой вариант восприятия среды обитания и защиты глаза от ненужных ей сильных УФ, фиолетовых, высокочастотных синих лучей с длинами волн менее 498 нм и приспособила воспринимать именно так. Например, синие, УФ лучи с длинами волн менее 496 нм для глаза являются не яркими, и колбочками не воспринимаются, т.к. они блокируются от попадания на колбочки ганглиозными и биполярными клетками сетчатки глаза, хотя они более мощные! (Парадокс). (См. рис. Ф).
При решении задачи на различение лучей при слабом освещении в условиях цветного зрения — "монохромных лучей" с длинами волн менее 498нм, в условиях "ночного видения" служат экстерорецепторы, называемые палочками, которые имеют пик чувствительности вокруг 496 нм и менее с фотопигментом высокой чувствительности при слабом освещении родопсином к лучам синим и УФ с высокой частотой колебаний (менее 496нм). (Колбочки их не воспринимают).
Откуда биологические понятия яркости и контрастности цвета при зрении отличаются от физическbх понятий яркости и контрастности света.
См. также[править | править код]
- A-взвешивание, звук эквивалент
- Кажущаяся яркость
- Цветное зрение
- XYZ (цветовая модель)
- Квантовая эффективность, датчик изображения эквивалент
- Метамерия цвета (версия Миг)
Примечания[править | править код]
- ↑ http://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/photoreceptors/
- ↑ http://en.wikipedia.org/wiki/Luminosity_function
- ↑ http://en.wikipedia.org/wiki/Luminosity_function
- ↑ http://en.wikipedia.org/wiki/Luminosity_function
- ↑ https://en.wikipedia.org/wiki/Spectral_power_distribution
- ↑ Judd, Deane B. and Wyszecki, Günter (1975). Color in Business, Science and Industry (3rd ed.). John Wiley. ISBN 0-471-45212-2.3
- ↑ Judd, Deane B. and Wyszecki, Günter (1975). Color in Business, Science and Industry (3rd ed.). John Wiley. ISBN 0-471-45212-2.3
- ↑ Vos, J. J. (1978). "Colorimetric and photometric properties of a 2° fundamental observer". Color Research and Application 3 (3): 125–128. doi:10.1002/col.5080030309.
- ↑ Stiles, W. S.; Burch, J. M. (1955). "Interim report to the Commission Internationale de l'Eclairage Zurich 1955, on the National Physical Laboratory's investigation of colour-matching". Optica Acta 2 (4): 168–181. Bibcode:1955AcOpt...2..168S. doi:10.1080/713821039.
- ↑ Sharpe, L. T.; Stockman, A.; Jagla, W.; Jägle, H. (2005). "A luminous efficiency function, V*(λ), for daylight adaptation". Journal of Vision 5 (11): 948–968. doi:10.1167/5.11.3.
- ↑ Kohei Narisada; Duco Schreuder (2004). Light Pollution Handbook. Springer. ISBN 1-4020-2665-X.
- ↑ Casimer DeCusatis (1998). Handbook of Applied Photometry. Springer. ISBN 1-56396-416-3.
- ↑ Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. ISBN 1-55860-792-7.
- ↑ Перейти обратно: а б Deane B. Judd. Contributions to Color Science. — Washington D.C. 20234: NBS, 1979.
- ↑ I. S. McLennan & J. Taylor-Jeffs (2004). "The use of sodium lamps to brightly illuminate mouse houses during their dark phases". Laboratory Animals 38: 384–392. DOI:10.1258/0023677041958927. PMID 15479553.
Внешние ссылки[править | править код]
- Цвет и исследовательские лаборатории Vision - световой эффективности данных таблицы [1].