Участник:Миг/Мембраны колбочек и палочек и их функция
Мембраны колбочек и палочек и их функция состоит в восприятии пучков лучей предметной точки изображения c последующим оппонентным отбором основных лучей RGB, выработкой биосигнала (не в цвете, на рецепторном уровне) для передачи его в зрительные отделы головного мозга.
Введение[править | править код]
Фоточувствительные фоторорецепторы сетчатки колбочки и палочки — экстерорецепторы, расположенные в сетчатке глаза воспринимают электромагнитное излучение в видимом диапазоне длин волн (рецепторный уровень). Фоторецепторы обеспечивают так-же восприятие оптического изображения (не цветное) — функцию зрения. После передачи сигналов оптического изображения в мозг — в зрительных отделах головного мозга формируется биполярно трёхмерноне, оптическое стереоизображение в цвете (нейронный уровень). Именно тот момент, когда происходит цветное зрение. Оно субъективное и у каждого из нас своё. Мы не можем судит о нашем цвете посредством колориметрии. Колориметр выдаёт цвет, который мы оцениваем у себя по своему, воспринимая отражённые сигналы цветного луча при колориметрии. Например, в работах С.Ременко и его последователей любые цветовые и не только цветовые сигналы электромагнитных волн выдаются фототранзисторами на колориметр, который показывает цвет для нашей зрительной системы. Как можно говорить о нашем зрении, например, цветном не зная где и как расположены палочки и колбочки, как работают фотопигменты в мембранах колбочек. Например, один фототранзистор вообще может заменить все экстерорецепторы сетчатки глаза. Как можно строить графики чувствительности колбочек, палочек, говорить об их связях с новым фоторецептором ганглиозного слоя сетчатки ipRGC не видя их. Можно ли вообще, вообще, писать о цвете, проводя исследования без участия зрительных отделов головного мозга. Больше того, разве можно говорить о работе колбочек и палочек при цветном зрении, отбрасывая данные последнего достижения 2011 г. в области ретиномоторной реакции фоторецепторов. Отсюда давно была отброшена неперспективная концепция С.Ременко.
Согласно ретиномоторной реакции фоторецепторов — механические процессы в сетчатке глаза связанны с перестройкой взаимного расположения рецепторов (палочек и колбочек), и гранул меланина,
в соответствии с уровнем освещённости. Не случайно основной элемент колбочек и палочек мембраны имеют:
- у колбочек — коническую форму,
- у палочек — цилиндрическую.
Колбочки воспринимают свет и выделяют основные лучи света (цвета) RGB с разными длинами волн c фронтом поперечного сечения от 8 до 1,5мкм, то под эти лучи размеры в трёх сечениях конуса мембраны имеют приблизительно такие же размеры (см. рис.1). Т.к. при цветном зрении участвуют только колбочки, то они воспринимают и оппонентно выделяют нормализованные лучи спектра S,M.,L (красные, зелёные, синие). Палочки, работая при сумеречном и ночном освещении, воспринимают более сильные синие и ультрафиолетовые лучи, которые в поперечном сечении фронта волны имеют размер 1,5-2мкм, что равно приблизительно поперечному сечению цилиндра мембраны палочек (см. рис.2). Т.е палочки в цветном зрении не участвуют (работают практически в чёрно-белом зрении с элементами сине-голубого оттенка).
Фотопигменты в мембранах колбочек и палочек[править | править код]
Зрительные пигменты находятся в бислойных биомембранах, во внешней доле фоторецептора (в мембране колбочек, палочек). Зрительные пигменты и передача зрительного сигнала (визуальная трансдукция) — это комплекс понятий для описания фототрансформации пигментов и их регенерации, процессов передачи сигнала, происходящих в глазу позвоночных животных. Эти биохимические процессы проходят при воздействии света с различной длиной волны (разного цвета) связанные с изменениями в структуре и взаимодействиях зрительных пигментов.
Опсины в мембранах колбочек и палочек[править | править код]
Образование оптического изображение при зрении у позвоночных животных связано с находящимися к сетчатке глаза колбочек и палочек. Палочки работают при очень слабых уровнях освещения т. н. сумеречном и ночном зрении. Они высоко чувствительны и могут сигнализировать о поглощении одиночных фотонов. Колбочки намного менее чувствительны к свету, чем палочки. Они участвуют в цветном зрении при достаточно ярком (дневном) свете (см. рис. 1).
- На рис. 1. светлопольные изображения фоторецепторов (палочки и колбочки), выделеных из сетчатки саламандры. Фототрансдукция имеет место во внешней доле, в то время как митохондрии плотно упакованы в эллипсоиде.
Фотопигменты опсины и другие зрительные пигменты найденны в клетках фоторецепторов (в мембране) в сетчатках глаз. Опсин образован в виде связки из семи трансмембранных альфа-спиралей, связанных шестью петлями. В клетках палочек молекулы опсинов — род-опсинов) вложены в мембраны дисков, которые размещаются полностью в мембране. «Голова» N-конечной-остановки молекулы простирается внутрь диска, а «хвост» с C-радикалом простирается в цитоплазме клетки. В клетках колбочки (в наружной части мембраны) c кон-опсинами)[3] диски определены плазменной мембраной клетки так, что голова N-конечной-остановки простирается вне клетки. Опсины сетчатки глаза ковалентно связаны с лизином на трансмембранной спирали, самой близкой C-конечной-остановки белка через Шиффовы основания. Формирование изменений Шиффова основания вовлекает удаление атома кислорода от относящегося к сетчатке глаза и двух водородных атомов от свободной группы аминокислоты лизина, давая H2O. Ретинилиден — двухосновная группа, сформированная так, что удаляет атом кислорода относящегося к сетчатке глаза, и потому опсины назвали ретинилиденовыми (retinylidene) белками.
- Классификация опсинов.
Ретиналь | Тип опсина | Пигмент | Длина волны света с макс. поглощением λMax, nm | Beispiele für das Vorkommen |
---|---|---|---|---|
11-cis-Retinal | Скотопсин | Родопсин | 500 | Человек, Wirbeltiere, Gliederfüßer, Weichtiere |
11-cis-Retinal | UV-Фотопсин | UV-Йодопсин | 340 | Honigbiene |
11-cis-Retinal | S-Фотопсин | S-Йодопсин | 430 | Affen |
11-cis-Retinal | M-Photopsin | M-Iodopsin | 535 | |
11-cis-Retinal | L-Photopsin | L-Iodopsin | 565 | Altweltaffen |
11-cis-Retinal | XL-Photopsin | XL-Iodopsin | 620 | Vögel |
3,4-Dehydro-11-cis-Retinal | Skotopsin | Порфиропсин | 520 | Süßwasserfische, Амфибии |
3,4-Dehydro-11-cis-Retinal | UV-Photopsin | UV-Цианопсин | 360 | |
3,4-Dehydro-11-cis-Retinal | S-Photopsin | S-Cyanopsin | 420 | |
3,4-Dehydro-11-cis-Retinal | M-Photopsin | M-Cyanopsin | 530 | |
3,4-Dehydro-11-cis-Retinal | L-Photopsin | L-Cyanopsin | 580 | |
3,4-Dehydro-11-cis-Retinal | XL-Photopsin | XL-Cyanopsin | 620 | |
9-cis-Retinal | Skotopsin | Iso-Rhodopsin | 485 | |
9-cis-Retinal | Photopsin | Iso-Iodopsin | 515 | |
3,4-Dehydro-9-cis-retinal | Skotopsin | Iso-Porphyropsin | 510 | |
3,4-Dehydro-9-cis-retinal | Photopsin | Iso-Cyanopsin | 575 | |
13-cis-Retinal | Bakterien-Opsin | Bakteriorhodopsin, «Halorhodopsin» | 560 | Halobakterien (lichtgetriebene Protonenpumpe, siehe (Chemiosmotische Kopplung) |
Melanopsin | 485 | Mensch, retinale Ganglienzellen |
Распределение палочек и колбочек в человеческой сетчатке[править | править код]
Распределение палочек и колбочек в человеческой сетчатк — необходимая информация для понимания взаимодействия и связей клеток и фоторецепторов в фокальной поверхности сетчатки.
Это для нас очень важно для понимание организации зрительных связей палочек и колбочек в сетчатке. Это связано со знанием пространственного распределения различных типов клеток в сетчатке. Изветно, что фоторецепторы распределены и собраны в блоках с довольно строгой мозаикой. Поскольку мы видели, что в ямке, мозаика расположения колбочек — шестиугольная упаковка. Вне ямки, палочки разбивают близкую шестиугольную упаковку колбочек, но все еще позволяют организованную архитектуру с колбочками, скорее равномерно раздельными и окруженны кольцами палочек. Таким образом, в терминах оценки колбочек и палочек — распределения различных поселений фоторецепторов в человеческой сетчатке. Ясно, что плотность колбочек является самой высокой в foveal яме и падает быстро вне ямки с уменьшением градиента плотности с вектором в сторону движения к периферийной части сетчатки (Osterberg, 1935; Curcio и др., 1987). Есть пик фоторецепторов колбочек в кольце вокруг ямки и равен приблизительно диаметру 4.5 мм или 18 степеням (величина угла конуса) от foveal ямы. Оптический нерв (мертвая точка) — конечно свободный фоторецептор (см. ниже).
- Рис.20. Графики распределения палочек и колбочек по горизонтальному меридиану.
- Рис.21. Удельные веса распределения колбочек в человеческой сетчатке.
Важно, что палочек в радиусе круга жёлтого пятна около 3мм вообще нет. Сразу можно сказать, что при дневном освещении, при цветном зрении работают только колбочки. Это доказано при микроскопии среза сетчатки рыб в 2011 году (см. Ретиномоторная реакция фоторецепторов).
Ретиномоторная реакция колбочек и палочек[править | править код]
Ретиномоторная реакция фоторецепторов является общим свойством зрительного аппарата как для насекомых[6], так и для позвоночных животных. Особенно активно изучалась ретиномоторная реакция рыб[7]. По данным Наумова и Карташева (1979) у костистых рыб на свету пигментные клетки расширяются и накрывают находящиеся около них палочки. Колбочки продвигаются к ядрам этих клеток и таким образом передвигаются в открытую для прохождения света зону. В темноте же к ядрам подтягиваются палочки и оказываются в зоне ближе к открытой поверхности, где проходит свет. Колбочки в это время приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их[8],[9].
Вследствие ретиномоторной реакции палочки с более высокой светочувствительностью, чем у колбочек, экранируются пигментными гранулами от попадания на них света с наступлением дневного освещения и с наступлением темноты палочки продвигаются в зону с открытым пространством для попадания света, а колбочки экранируются в это время пигментными гранулами и опускаются в зону ниже палочек, куда не проходят более сильные синие и ультрафиолетовые лучи, которые воспринимают палочки. Пиковой зоной раздела длин волн спектра электромагнитных колебаний падающих лучей света на палочки и колбочки является длина волны 498нм. Палочки работают в зоне спектра длин волн синего и ультрафиолетового излучения до 498нм, колбочки работают в зоне более длинных волн после 498нм, за исключением Колбочек-S (синих), пиковая зона которых лежит в зоне длины волны 434нм. Это колбочки расположенные за пределами зоны желтого пятна, окружённые палочками. В любом случае процесс ретиномоторной реакции затрагивает все колбочки и все палочки: все колбочки видят дневной свет, палочки видят ночью и в сумерках только синие и ультрафиолетовые лучи света.
Ультраструктура синаптических окончаний палочки и колбочки[править | править код]
Работа клеток фоторецептора в сетчатке состоит в трансдукции светового сигнала, т.е. во взаимодействии с полученным квантом света в зрительном процессе, с работой мембраны фоторецептора, содержащей пигмент внешней доли и передачи сообщения , относительно чисел квантов света и фоточувствительности к различным длинам волны, к следующей стадии интеграции (сжатии сигнала при оппонентном отборе) и обработкой его во внешнем сетевидном слое (см. Визуальная фототрансдукция).
Структура синапсов палочек и колбочек[править | править код]
Структурное образование, обеспечивающее передачу сенсорной информации от клетки-колбочки именуется "ножка", а от клетки-палочки - "шарик". Ножки колбочек — большие, конические, плоские окончания (диаметром 8-10 мкм) аксонов колбочки, которые лежат более или менее рядом на том же самом узле на внешнем краю внешнего сетевидного слоя (OPL) (Рис. 23a и b). Более многочисленные шарики палочки, напротив, являются маленькими круглыми расширениями аксона (диаметром 3-5 мкм ) или даже расширения тела клетки. Они лежат упакованные между и выше ножки конуса-колбочки (рис. 23a и b). Синаптические окончания обоих типов фоторецепторов заполнены синаптическими пузырьками. В их синапсах к нейронам второго порядка (биполярные и горизонтальные клетки), шарики палочек и ножки колбочек образуют плотные структуры, именуемые синаптическими лентами, указывающие на постсинаптические вставленные процессы (звездочки на рис. 24).
В ножке колбочке приблизительно 30 из этих лент образуются и связаны с 30-ю "триадами" вставленных процессов (Ahnelt и др., 1990). В шарике палочки 2 ленты связаны с 4 вставными нейронами второго порядка, в то время как ножка колбочки поставляет информацию более, чем ста нейронам второго порядка (рис. 23b).
Колбочка «триады», вставленных процессов второго порядка обычно состоит из центрального элемента, который является древовидным терминалом, вставляющейся биполярной клетки (IBC), и два боковых элемента, которые являются древовидными терминалами горизонтальных клеток (HC) (Рисунки. 24 и 27). Кроме того, другие варианты биполярной клетки имеют дендриты, устанавливающие синаптические контакты на и под поверхностью конуса мембраны колбочки pedicle заключаются в том, что сначала их называли плоскими контактами (FBC) (Missotten, 1965; Dowling и Бойкот, 1966; Kolb, 1970) (рис. 27), но тогда они были лучше охарактеризованы и определены Lasansky (1971) как основные соединения (рис. 26).
Шарики палочек имеют только две синаптических ленты, связанные с двумя боковыми элементами, которые являются горизонтальными терминалами аксона клетки (HC) и два центральных вставляющихся дендрита биполярных клеток палочки (rb) (Missotten, 1965; Dowling и Бойкот, 1966; Kolb, 1970). На шариках палочек нет никаких основных соединений.
Это ещё раз показывает, что палочки весьма изолированны от колбочек и других элементов сетчатки (см. рис. 23a, 23b, 24, 25, 26, 27, 28), и формула, что при цветном зрении работают совместно колбочки и палочки, то на уровне показанных структур колбочек и палочек мы лишний раз видим, что это согласуются с вопросами ретиномоторной реакции палочек и колбочек, где палочки при цветном зрении не работают. Приведенная информация снимков фоторецепторов палочек и колбочек на клеточном уровне в цвете — яркое доказательство того, что принцип трихроматизма — не предполагаемый, а реально существующий.
См. также[править | править код]
Примечания[править | править код]
- ↑ Human Physiology and Mechanisms of Disease by Arthur C. Guyton (1992) p.373
- ↑ http://webvision.med.utah.edu/Phototransduction.html#Introduction
- ↑ http://humbio.ru/humbio/ssb/001181d1.htm
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ В. П. Тыщенко ФИЗИОЛОГИЯ НАСЕКОМЫХ М., «ВЫСШАЯ ШКОЛА» 1986, с. 223
- ↑ Загальская, Е. О. Морфологические особенности ретиномоторной реакции у молоди симы (oncorhynchus masou) в магнитном поле и красном свете / Е. О. Загальская, В. П. Гнюбкина, А. А. Максимович // Морфология : научно-теоретический медицинский журнал. — 2004. — Том 126,N 6 . — С. 32-36.
- ↑ http://zoometod.com/ixt/ixtiolog_63.html Анисимова И. М., Лавровский В. В. Ихтиология
- ↑ http://clck.yandex.ru/redir/AiuY0DBWFJ4ePaEse6rgeAjgs2pI3DW99KUdgowt9Xt0dmymRAsAFAC41YGK3IYaGvvsyeXdZeHQNpszBsrsqZIe04jRS7Q_-UGVS_eXc43ES6DTijTRmmmHQAhjEN6B9_b0UYDggTd1O0pMdSGPHLJk-QS9esTl7vOPp-wBR0SDO7MxYWW-sQ?data=UlNrNmk5WktYejR0eWJFYk1LdmtxdmdzQ3hIMGVkazluRW9jUlZqeVhkSzNNMXM0amVVYTBXR2h3dFFKZ2xMWDhNY3p5NS1iUUV5aGhjdWlpNFI2OGpRTmlRNEV1ekw5LWpxRm1mYldzWUt2c3VHR1dQVmJYOUlpaVlGUnRmVXdwaGhFaU5ycjIzNA&b64e=2&sign=032480085342e016d3fecd85afeb18ec&keyno=8&l10n=ru&mc=4017&w=862&h=399 Е. О. Загальская, В. П. Гнюбкина. Ультраструктура пигментного эпителия сетчатки глаз молоди симы Oncorhynchus Masou. Биология моря, 2006, том 32, № 1, с. 55-59
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html
- ↑ http://webvision.med.utah.edu/photo2.html