Вектор Лапласа — Рунге — Ленца
- В этой статье вектора и их величины выделены жирным шрифтом и курсивом, например, .
В классической механике ве́ктор Лапла́са — Ру́нге — Ле́нца — вектор, который используется в основном для описания формы и ориентации орбиты движения одного астрономического тела вокруг другого, наподобие планеты, вращающейся вокруг солнца. Для двух тел, гравитационная сила взаимодействия которых описывается законом всемирного тяготения Ньютона, вектор Лапласа — Рунге — Ленца — интеграл движения, то есть он не изменяется от времени [1], что эквивалентно сохранению вектора Лапласа — Рунге — Ленца. Более широко этот вектор сохраняется во всех задачах с двумя телами, взаимодействующими посредством центральной силы, которая изменяется обратно пропорционально квадрату расстояния между ними. Такие задачи называют задачами Кеплера [2]. Например, такой потенциал возникает при рассмотрении классических орбит (без учёта квантования) в задаче о движении отрицательно заряженного электрона движущегося в электрическом поле положительно заряженного ядра. Если вектор Лапласа — Рунге — Ленца задан, то форма их относительного движения может быть получена из простых геометрических соображений, с использованием законов сохранения этого вектора и энергии.
Согласно принципу соответствия у вектора Лапласа — Рунге — Ленца имеется квантовый аналог, который был использован в первом выводе спектра атома водорода [3], ещё перед открытием уравнения Шрёдингера.
В задаче Кеплера имеется необычная особенность: конец вектора импульса p всегда движется по кругу [4]. Из-за расположения этих кругов для заданной полной энергии E, проблема Кеплера математически эквивалентна частице, свободно перемещающейся в четырёхмерной сфере [5]. По этой математической аналогии, сохраняющийся вектор Лапласа — Рунге — Ленца эквивалентен дополнительным компонентам углового момента в четырёхмерном пространстве [6].
Вектор Лапласа — Рунге — Ленца также известен как вектор Лапласа, вектор Рунге-Ленца и вектор Ленца, хотя ни один из этих ученых не вывел его впервые. Вектор Лапласа — Рунге — Ленца открывался вновь несколько раз [7]. Он также эквивалентен безразмерному вектору эксцентриситета в небесной механике [8]. Точно так же для него нет никакого общепринятого обозначения, хотя обычно используется A. Для различных обобщений вектора Лапласа — Рунге — Ленца, которые определены ниже, используется символ .
Контекст[править | править код]
Одиночная частица, движущаяся под воздействием любой консервативной центральной силы, имеет, по крайней мере, четыре интеграла движения (сохраняющиеся при движении величины): полная энергия E и три компоненты углового момента (вектора L). Орбита частицы лежит в плоскости, которая определяется начальным импульсом частицы, p (или, что эквивалентно, скоростью v) и координатами, то есть радиус-вектором r между центром силы и частицей (см. рис. 1). Эта плоскость перпендикулярна постоянному вектору L и её уравнение может быть выражено математически с помощью скалярного произведения r·L = 0.
Как определено ниже, вектор Лапласа-Рунге-Ленца A всегда находится в плоскости движения — то есть, A·L = 0 — для любой центральной силы. Также A является постоянным только для силы зависящей обратно пропорционально квадрату расстояния [2]. Если центральная сила приблизительно зависит как обратный квадрат расстояния, вектор A является приблизительно постоянным по длине, но медленно вращается. Для большинства центральных сил, однако, этот вектор A не постоянный, а изменяет длину и направление. Обобщённый сохраняющийся вектор Лапласа-Рунге-Ленца может быть определен для всех центральных сил, но этот вектор — сложная функция положения, и обычно не выражается аналитически в элементарных или специальных функциях [9][10].
История[править | править код]
Вектор Лапласа-Рунге-Ленца A является сохраняющейся величиной в задаче Кеплера и полезен при описании астрономических орбит, наподобие движения планеты вокруг Солнца. Однако он никогда не был широко известен среди физиков, возможно, потому что является менее интуитивно понятным вектором, чем импульс и угловой момент. Вектор Лапласа-Рунге-Ленца независимо открывали несколько раз за прошедшие три столетия [7]. Яков Герман был первым, кто показал, что A сохраняется для специального случая центральной силы, зависящей обратно пропорционально квадрату расстояния [11], и нашёл его связь с эксцентриситетом эллиптической орбиты. Работа Херманна была обобщена до её современной формы Иоганном Бернулли в 1710 [12]. В свою очередь Пьер-Симон Лаплас в конце XVIII столетия, открыл сохранение A вновь, доказав это аналитически, а не геометрически, как его предшественники [13].
В середине XIX века, Уильям Гамильтон получил эквивалент вектора эксцентриситета определенный ниже [8], использовав его, чтобы показать, что конец вектора импульса p двигается по кругу под действием центральной силы, зависящей обратно пропорционально квадрату расстояния (Рис. 3) [4]. В начале XX столетия, Уиллард Гиббс получил тот же самый вектор с помощью векторного анализа [14]. Вывод Гиббса использовал Карл Рунге в популярном немецком учебнике по векторам в качестве примера [15], на который ссылался Вильгельм Ленц в своей статье о квантовомеханическом (старом) рассмотрении атома водорода [16].
В 1926, этот вектор использовал Вольфганг Паули, чтобы вывести спектр атома водорода, используя современную матричную квантовую механику, а не уравнение Шрёдингера [3]. После публикации Паули, вектор стал, главным образом, известен как вектор Рунге-Ленца.
Математическое определение[править | править код]
Для одиночной частицы движущейся под действием центральной силы, зависящей обратно пропорционально квадрату расстояния описываемой уравнением , вектор Лапласа-Рунге-Ленца A определен математически по формуле [2]
где
- — масса точечной частицы, движущейся вод воздействием центральной силы,
- — вектор импульса,
- — вектор углового момента,
- — параметр, описывающий величину центральной силы,
- — единичный вектор, то есть , где — радиус-вектор положения частицы, и r его длина.
Поскольку мы предположили, что сила консервативная, то полная энергия E сохраняется
Из центральности силы следует, что вектор углового момента L также сохраняется и определяет плоскость, в которой частица совершает движение. Вектор Лапласа-Рунге-Ленца A перпендикулярен вектору углового момента L и, таким образом, находится в плоскости орбиты. Уравнение A•L = 0 верно, потому что вектора p×L и r перпендикулярны L.
Это определение вектора Лапласа-Рунге-Ленца A применимо для единственной точечной частицы с массой m, движущейся в стационарном (не зависящем от времени) потенциале. Кроме того, то же самое определение может быть расширено на проблему с двумя телами, наподобие проблемы Кеплера, если заменить m на приведённую массу этих двух тел и r на вектор между этими телами.
Круговой годограф импульса[править | править код]
Сохранение вектора Лапласа-Рунге-Ленца A и вектора углового момента L используется в доказательстве того, что вектор импульса p движется по кругу под действием центральной силы обратно пропорциональной квадрату расстояния. Вычисляя векторное произведение A и L, приходим к уравнению для p
Направляя вектор L вдоль оси z, а главную полуось — по оси x приходим к уравнению
Другими словами, вектор импульса p ограничен окружностью радиуса mk/L, центр которой расположен в точке с координатами (0, A/L). Эксцентриситет e соответствует косинусу угла η, показанного на рис. 2. Для краткости можно ввести переменную . Круговой годограф полезен для описания симметрии проблемы Кеплера.
Интегралы движения и суперинтегрируемость[править | править код]
Семь скалярных величин: энергия E, и компоненты векторов Лапласа-Рунге-Ленца A и момента импульса L связаны двумя соотношениями. Для векторов выполняется условие ортогональности A•L=0, а энергия входит в выражение для квадрата длины вектора Лапласа-Рунге-Ленца, полученного выше A2 = m2k2 + 2 m E L2. Тогда существует пять независимых сохраняющихся величин, или интегралов движения. Это совместимо с шестью начальными условиями (начальное положение частицы и её скорость являются векторами с тремя компонентами), которые определяют орбиту частицы, так как начальное время не определено интегралами движения. Поскольку величину A (и эксцентриситет e орбиты) можно определить из полного углового момента L и энергии E, то утверждается, что только направление A сохраняется независимо. Кроме того, вектор A должен быть перпендикулярным L — это приводит к одной дополнительной сохраняющейся величине.
Механическая система с d степенями свободы может обладать максимум 2d-1 интегралами движения, поскольку 2d начальных условия и начальное время не могут быть определены из интегралов движения. Система с более чем d интегралами движения называется суперинтегрируемой, а система с 2d-1 интегралами называется максимально суперинтегрируемой [17]. Поскольку решение уравнения Гамильтона-Якоби в одной системе координат может привести только к d интегралам движения, то переменные должны разделяться для суперинтегрируемых систем в больше чем одной системе координат [18]. Проблема Кеплера — максимально суперинтегрируема, так как она имеет три степени свободы (d=3) и пять независимых интегралов движения; переменные в уравнении Гамильтона-Якоби разделяются в сферических координатах и параболических координатах [19], как описано ниже. Максимально суперинтегрируемые системы могут быть квантованы с использованием только коммутационных соотношений, как показано ниже [20].
Уравнение Гамильтона-Якоби в параболических координатах[править | править код]
Постоянство вектора Лапласа-Рунге-Ленца можно вывести, используя уравнение Гамильтона-Якоби в параболических координатах (ξ, η), которые определяются следующим образом
где r — радиус в плоскости орбиты
Обратное преобразование этих координат запишется в виде
Разделение переменных в уравнении Гамильтона-Якоби в этих координатах даёт два эквивалентных уравнения [19][21]
где β — интеграл движения. Посредством вычитания этих уравнений и выражения в терминах декартовых координат импульса px и Py можно показать, что β эквивалентен вектору Лапласа-Рунге-Ленца
Этот подход Гамильтона-Якоби может использоваться, чтобы вывести сохраняющийся обобщённый вектор Лапласа-Рунге-Ленца в присутствии электрического поля E [19][22]
где q — заряд обращающейся частицы.
Альтернативная формулировка[править | править код]
В отличие от импульса p и углового момента L, у вектора Лапласа-Рунге-Ленца нет общепринятого определения. В научной литературе используются несколько различных множителей и символов. Самое общее определение дается выше, но другое определение возникает после деления на постоянную mk, чтобы получить безразмерный сохраняющийся вектор эксцентриситета
где v — вектор скорости. Направление этого скалированного вектора e совпадает с направлением A и его амплитуда равна эксцентриситету орбиты. Мы получим другие определения, если поделить A на m,
или на p0
который имеет ту же размерность, что и угловой момент (вектор L). В редких случаях, знак вектора Лапласа-Рунге-Ленца может быть изменён на противоположный. Другие общие символы для вектора Лапласа-Рунге-Ленца включают a, R, F, J и V. Однако выбор множителя и символа для вектора Лапласа-Рунге-Ленца, конечно же, не влияет на его сохранение.
Альтернативный сохраняющийся вектор: бинормаль — вектор B изучен Уильямом Гамильтоном [8]
который сохраняется и указывает вдоль малой полуоси эллипса. Вектор Лапласа-Рунге-Ленца A = B×L является векторным произведением B и L (Рис. 3). Вектор B обозначен как бинормаль, так как он перпендикулярен как A, так и L. Подобно вектору Лапласа-Рунге-Ленца, вектор бинормали можно определить с различными множителями.
Два сохраняющиеся вектора, A и B можно объединить в сохраняющийся двухэлементный тензор W
где обозначает тензорное произведение, а α и β — произвольные множители [9]. Записанное в компонетной записи это уравнение читается так
Векторы A и B ортогональны друг другу и их можно представить, как главные оси сохраняющегося тензора W, то есть как его собственные вектора. W перпендикулярен L
поскольку A и B перпендикалярны, то .
Вывод орбит Кеплера[править | править код]
Форма и ориентация орбиты в задаче Кеплера, зная вектор Лапласа-Рунге-Ленца A, можно определить следующим образом. Рассмотрим скалярное произведение векторов A и r (положения планеты):
где θ является углом между r и A (Рис. 4). Поменяем порядок множителей в смешанном произведении r•(p×L)=L•(r×p)=L•L=L2, и при помощи несложных преобразований получим определение для конического сечения:
с эксцентриситетом заданным по формуле:
Приходим к выражению квадрата модуля вектора A в виде
которое можно переписать используя эксцентриситет орбиты
Таким образом, если энергия отрицательна, что соответствует связанным орбитам, эксцентреситет меньше чем единица, и орбита имеет форму эллипса. Наоборот, если энергия положительна (несвязанные орбиты, также называемые орбитами рассеяния), эксцентриситет больше чем единица и орбита — гипербола. Наконец, если энергия точно равно нулю, эксцентриситет — единица, и орбита — парабола. Во всех случаях, вектор A направлен вдоль оси симметрии конического сечения и указывает на точку самого близкого положения точечной частицы от начала координат.
Сохранение под действием силы обратно пропорцинальной квадрату расстояния[править | править код]
Сила , действующая на частицу предполагается центральной. Поэтому
для некоторой функции радиуса . Поскольку угловой момент сохраняется под действием центральных сил, то и
где импульс записан в виде , и тройное векторное произведение упростилось с помощью формулы Лагранжа
Тождество
приводит к уравнению
Для специального случая центральной силы, зависящей обратно пропорцинальной квадрату расстояния , последнее выражение равно
Тогда A сохраняется в этом случае
Как показано ниже, вектор Лапласа-Рунге-Ленца A является частным случаем обобщённого сохраняющегося вектора , который может быть определён для любой центральной силы [9][10]. Однако большинство центральных сил не формируют замкнутых орбит (см. теорема Бернарда), аналогичный вектор редко имеет простое определение и в общем случае представляет собой многозначную функцию угла θ между r и .
Изменение под действием возмущающих центральных сил[править | править код]
Во многих практических проблемах, типа планетарного движения, взаимодействие между двумя телами только приблизительно зависит обратно пропорционально квадрату расстояния. В таких случаях, вектор Лапласа-Рунге-Ленца A не постоянен. Однако, если возмущающий потенциал h (r) зависит только от расстояния, то полная энергия E и вектор углового момента L, сохраняются. Поэтому, траектория движение все ещё находится в перпендикулярной к L плоскости и величина A сохраняется, согласно уравнению . Следовательно, направление A медленно вращается по орбите в плоскости. Используя каноническую теорию возмущений и координаты действие-угол, можно прямо показать [2], что A вращается со скоростью
где T — период орбитального движения и равенство L dt = m r2 dθ использовалось, чтобы преобразовать интеграл по времени в интеграл по углу (Рис. 5). Например, принимая во внимание эффекты общей теории относительности, приходим к добавке, которая в отличие от обычной гравитационной силы Ньютона зависит обратно пропорционально кубу расстояния [23]:
Подставляя эту функцию в интеграл и используя уравнение
чтобы выразить r в терминах θ, скорость прецессии перицентра, вызванная этим возмущением, запишется в виде [23]
которая близка по значению к величине прецессии для Меркурия необъяснённой ньютоновской теорией гравитации [24]. Это выражение используется для оценки прецессии связанной с поправками общей теории относительности для двойных пульсаров [25]. Это согласие с экспериментом является сильным аргументом в пользу общей теории относительности [26].
Теория групп[править | править код]
Преобразование Ли[править | править код]
Существует другой метод вывода вектора Лапласа-Рунге-Ленца, использующий вариацию координат без привлечения скоростей [27]. Скалирование координат r и времени t с разной степенью параметра λ (Рис. 6)
Это преобразование изменяет полный угловой момент L и энергию E
но сохраняет произведение EL2. Отсюда следует, что эксцентриситет e и величина A сохраняются в уже упомянутом ранее уравнении
Направление A также сохраняется, поскольку полуоси не изменяются при скалировании. Это преобразование оставляет верным третий закон Кеплера, а именно то, что полуось a и период T формируют константу 'T2/a3.
Скобки Пуассона[править | править код]
Для трёх компонент Li вектора углового момента L можно определить скобки Пуассона
где индекс i пробегает значения = 1, 2, 3 и εijs — абсолютно антисимметричный тензор, то есть символ Леви-Чивита (третий индекс суммирования s, чтобы не путать с силовым параметром k, определённым выше). В качестве скобок Пуассона используются квадратные скобки (а не фигурные), как и в литературе и, в том числе, чтобы интерпретировать их как квантовомеханические коммутационные соотношения в следующем разделе.
Как показано выше, изменённый вектор Лапласа-Рунге-Ленца D можно определить с той же размерностью, что и угловой момент разделив A на p0. Скобка Пуассона D с вектором углового момента L запишется в похожем виде
Скобка Пуассона D с D зависит от знака E, то есть когда полная энергия E отрицательна (эллиптические орбиты под действием центральной силы зависящей обратно пропорционально квадрату расстояния) или положительная (гиперболические орбиты). Для отрицательных энергий скобки Пуассона примут вид
В то время как для положительных энергий скобки Пуассона имеют противоположный знак
Инварианты Казимира для отрицательных энергий определяются посредством следующих соотношений
и мы имеем нулевые скобки Пуассона для всех компонент D и L
C2 равен нулю, из-за ортогональности векторов. Однако другой инвариант C1 нетривиален и зависит только от m, k и E. Этот инвариант можно использовать для вывода спектра атома водорода, используя только квантовомеханическое каноническое коммутационное соотношение, вместо более сложного уравнения Шрёдингера.
Теорема Нётер[править | править код]
Теорема Нётер утверждает, что инфинитезимальная вариация обобщённых координат физической системы
вызывает изменение функции Лагранжа в первом порядке на полную производную по времени
соответствует сохранению величины
Сохранённая компонента вектора Лапласа-Рунге-Ленца As соответствует вариации координат [28]
где i равняется 1, 2 и 3, а xi и pi — i-ые компоненты векторов положения r и импульса p, соответственно. Как обычно, δis — символ Кронекера. Получающееся изменение в первом порядке функции Лагранжа запишем как
Это приводит к сохранению компоненты As
Законы сохранения и симметрия[править | править код]
Вариация координаты, которая приводит к сохранению вектора Лапласа-Рунге-Ленца (см. теорема Нётер), можно рассматривать как некоторую симметрию системы. В классической механике, симметрии — непрерывные операции, которые отображают одну орбиту на другую, не изменяя энергию системы; в квантовой механике, симметрии — непрерывные операции, которые смешивают атомные орбитали, не изменяя полную энергию. Например, любая центральная сила является симметрической при действии группы вращения SO(3), приводя к сохранению углового момента L. Классически, полное вращение системы не затрагивает энергию орбиты; квантовомеханически, вращения смешивают сферические гармоники с тем же самым квантовым числом l (вырожденные состояния), не изменяя энергию.
Симметрия для центральной силы, зависящей обратно квадрату расстояния, является выше и более тонкой. Специфическая симметрия проблемы Кеплера приводит к сохранению как вектора углового момента L, так и вектора Лапласа-Рунге-Ленца A (как определено выше) и квантовомеханически гарантирует, что уровни энергии атома водорода не зависят от квантовых чисел углового момента l и m. Симметрия является более тонкой, потому что операция симметрии должна иметь место в пространстве большей размерности; такие симметрии часто называют скрытыми симметриями [27]. Классически, более высокая симметрия проблемы Кеплера учитывает непрерывные изменения орбит, которые сохраняют энергию, но не угловой момент; другими словами орбиты с одинаковой энергией, но различными угловыми моментами (эксцентриситетом) могут быть преобразованы непрерывно друг в друга. Квантовомеханически это соответствует смешиванию орбиталей, которые отличаются квантовыми числами l и m, атомные орбитали типа s (l = 0) и p (l = 1). Такое смешивание нельзя произвести с обычными трёхмерными трансляциями или вращениями, но оно эквивалентно вращению в пространстве с более высоким измерением.
Для отрицательных энергий — то есть связанная система — симметрия SO(4), которая сохраняет длину четырёхмерных векторов
В 1935, Владимир Фок показал, что квантовомеханическая проблема Кеплера, эквивалентна проблеме свободной частицы, ограниченной четырёхмерной гиперсферой [5]. В частности, Фок показал, что волновая функция уравнения Шрёдингера в пространстве импульсов для проблемы Кеплера представляет собой стереографическую проекцию сферических гармоник на гиперсферу. Вращение гиперсферы и перепроектирование приводит к непрерывному преобразованию эллиптических орбит, не изменяющего энергию; квантовомеханически это соответствует смешиванию всех орбиталей с одинаковым главным квантовым числом n. Валентин Баргман отметил впоследствии, что скобки Пуассона для вектора углового момента L и скалированного вектора Лапласа-Рунге-Ленца D формируют алгебру Ли для SO(4). [6] Проще говоря, эти шесть величин D и L соответствуют шести сохраняющимся угловым импульсам в четырёх измерениях, связанных с шестью, возможными простыми вращениями в этом пространстве (есть шесть способов выбрать две оси из четырёх). Это заключение не подразумевает, что наша вселенная — четырёхмерная гиперсфера; это просто означает, что эта специфическая проблема физики (проблема двух тел для центральной силы, зависящей обратно квадрату расстояния) математически эквивалентна свободной частице на четырёхмерной гиперсфере.
Для положительных энергий — то есть, для рассеянных систем — более высокая симметрия — SO(3,1), которая сохраняет длину 4 вектора в пространстве с метрикой Минковского
Фок [5] и Баргман [6] рассмотрели как отрицательные, так и положительные энергии. Они также были рассмотрены энциклопедически Бендером и Ициксоном [29][30].
Симметрия вращений в 4-хмерном пространстве[править | править код]
Связь между проблемой Кеплера и вращениями в четырёхмерном пространстве SO(4) можно достаточно просто визуализировать [29][31][32]. Пусть в четырехмерном пространстве заданы декартовы координаты, которые обозначены (w, x, y, z), где (x, y, z) представляют декартовы координаты обычного положения трёхмерного вектора r. Трёхмерный вектор импульса p связан с четырёхмерным вектором на четырёхмерной единичной сфере посредством
где — единичный вектор вдоль новой оси w. Поскольку имеет только три независимые компоненты, то этот вектор можно обратить, получив выражение для p. Например, для компененты x
и аналогично для py и pz. Другими словами, трёхмерный вектор p является стереографической проекцией четырёхмерного вектора , умноженному на p0 (Рис. 8).
Без потери общности, мы можем устранить нормальную вращательную симметрию, выбирая декартовы координаты, где ось z направлена вдоль вектора углового момента L, и годограф импульса расположен как показано на рисунке 7, с центрами кругов на оси y. Так как движение происходит в плоскости, а p и L ортогональны, pz = ηz = 0 и внимание можно сосредоточить на трехмерном векторе = (ηw, ηx, ηy). Семейство кругов Аполлона годографов импульса (Рис. 7) соответствует множеству больших кругов на трехмерной сфере , все из которых пересекаются ось ηx в этих двух фокусах ηx = ±1, соответствующих фокусам годографа импульса при px = ±p0. Большие круги связаны простым вращением вокруг оси ηx (Рис. 8). Эта вращательная симметрия преобразовывает все орбиты с той же самой энергией в друг друга; однако, такое вращение ортогонально к обычным трёхмерным вращениям, так как она преобразовывает четвёртое измерение ηw. Эта более высокая симметрия характерна для проблемы Кеплера и соответствует сохранению вектора Лапласа-Рунге-Ленца.
Изящное решение для проблемы Кеплера с использованием переменных угол-действие можно получить, избавляясь от избыточной четырехмерной координаты и используя эллиптические цилиндрические координат (α, β, φ) [33]
где используются эллиптические функции Якоби: sn, cn и dn.
Применение и обобщения[править | править код]
Квантовая механика атома водорода[править | править код]
Скобки Пуассона дают простой способ для квантования классической системы. Коммутационное соотношение двух квантовомеханических операторов равняется скобке Пуассона соответствующих классических переменных, умноженных на [34]. Выполняя это квантование и вычисляя собственные значения оператора Казимира для проблемы Кеплера, Вольфганг Паули вывел энергетический спектр водородоподобного атома (Рис. 9) и, таким образом, его атомный эмиссионный спектр [3]. Это изящное решение было получено до изобретения уравнения Шрёдингера [35].
Особенность квантовомеханического оператора для вектора Лапласа-Рунге-Ленца A то, что импульс и операторы углового момента не коммутируют друг с другом, следовательно, векторное произведение p и L должно быть определено тщательно [36]. Как правило, операторы в декартовой системе координат As определены с помощью симметризованного произведения
из которого определяются соответствующие лестничные операторы
Нормированный оператор первого инварианта Казимира может быть определён подобным образом
где H-1 — оператор обратный к оператору энергии (гамильтониан) и I — единичный оператор. Применяя эти лестничные операторы к собственным состояниям операторов полного углового момента, азимутального углового момента и энергии, можно показать, что собственные состояния первого оператора Казимира задаются формулой n2 — 1. Следовательно, уровни энергии даются выражением
которое идентично формуле Ридберга для атома водорода (Рис 9).
Обобщение на другие потенциалы и СТО[править | править код]
Вектор Лапласа-Рунге-Ленца был обобщён на другие потенциалы и даже на специальную теорию относительности. Наиболее общую форму этого вектора можно записать в виде [9]
где u = 1/r (см. теорема Бертрана) и ξ = cos θ, с углом θ определённым как
Здесь γ — релятивистский фактор. Как и раньше, можно получить, сохраняющийся вектор бинормали B взяв векторное произведение с сохраняющимся вектором углового момента
Эти два вектора можно соединить в сохраняющийся двухкомпонентный тензор W
Для примера вычислим вектор Лапласа-Рунге-Ленца для нерелятивистского изотропного гармонического осциллятора. [9] Рассмотрим центральную силу:
вектор углового момента сохраняется и поэтому движение происходит в плоскости. Сохраняющийся тензор можно переписать в более простом виде:
хотя нужно заметить, чтоp и r не перпендикулярны, как A и B. Соответствующий вектор Лапласа-Рунге-Ленца имеет более сложную запись
где — частота осциллятора.
См. также[править | править код]
Литература[править | править код]
- ↑ В. И. Арнольд Математические методы классической механики, 5-е изд.. — Москва: Едиториал УРСС, 2003. — С. 416. — ISBN 5-354-00341-5о книгеРегулярное выражение «ISBN» классифицировало значение «ISBN5354003415» как недопустимое.
- ↑ а б в г Г. Голдштейн Классическая механика. — Наука, 1975. — С. 416.о книге
- ↑ а б в Pauli, W (1926). "Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik". Zeitschrift für Physik 36: 336–363.
- ↑ а б Hamilton, WR (1847). "The Hodograph, or a new Method of expressing in symbolical Language the Newtonian Law of Attraction". Proceedings of the Royal Irish Academy 3: 344–353.
- ↑ а б в Fock, V (1935). "Zur Theorie des Wasserstoffatoms". Zeitschrift für Physik 98: 145–154.
- ↑ а б в Bargmann, V (1936). "Zur Theorie des Wasserstoffatoms: Bemerkungen zur gleichnamigen Arbeit von V. Fock". Zeitschrift für Physik 99: 576–582.
- ↑ а б Goldstein, H. (1975). "Prehistory of the Runge-Lenz vector". American Journal of Physics 43: 735–738.
Goldstein, H. (1976). "More on the prehistory of the Runge-Lenz vector". American Journal of Physics 44: 1123–1124. - ↑ а б в Hamilton, WR (1847). "On the Application of the Method of Quaternions to some Dynamical Questions". Proceedings of the Royal Irish Academy 3: Appendix III, pp. xxxvi-l.
- ↑ а б в г д Fradkin, DM (1967). "Existence of the Dynamic Symmetries O4 and SU3 for All Classical Central Potential Problems". Progress of Theoretical Physics 37: 798–812.
- ↑ а б Yoshida, T (1987). "Two methods of generalisation of the Laplace-Runge-Lenz vector". European Journal of Physics 8: 258–259.
- ↑ Hermann, J (1710). "Metodo d'investigare l'orbite de' pianeti". Giornale de Letterati D'Italia 2: 447–467.
Hermann, J (1710). "Extrait d'une lettre de M. Herman à M. Bernoulli datée de Padoüe le 12. Juillet 1710". Histoire de l'academie royale des sciences (Paris) 1732: 519–521. - ↑ Bernoulli, J (1710). "Extrait de la Réponse de M. Bernoulli à M. Herman datée de Basle le 7. Octobre 1710". Histoire de l'academie royale des sciences (Paris) 1732: 521–544.
- ↑ PS Laplace Traité de mécanique celeste. — 1799. — С. Tome I, Premiere Partie, Livre II, pp.165ff.о книге
- ↑ JW Gibbs Vector Analysis. — New York: Scribners, 1901. — С. p. 135.о книге
- ↑ C Runge Vektoranalysis. — Leipzig: Hirzel, 1919. — С. Volume I.о книге
- ↑ Lenz, W (1924). "Über den Bewegungsverlauf und Quantenzustände der gestörten Keplerbewegung". Zeitschrift für Physik 24: 197–207.
- ↑ Evans, NW (1990). "Superintegrability in classical mechanics". Physical Review A 41: 5666–5676.
- ↑ A Sommerfeld Atomic Structure and Spectral Lines. — London: Methuen, 1923. — С. 118.о книге
- ↑ а б в LD Landau Mechanics. — 3rd edition. — Pergamon Press, 1976. — С. p. 154. — ISBN 0-08-021022-8о книгеРегулярное выражение «ISBN» классифицировало значение «ISBN0080210228(hardcover)andISBN0080291414(softcover)» как недопустимое.
- ↑ Evans, NW (1991). "Group theory of the Smorodinsky-Winternitz system". Journal of Mathematical Physics 32: 3369–3375.
- ↑ Dulock, VA; McIntosh HV (1966). "On the Degeneracy of the Kepler Problem". Pacific Journal of Mathematics 19: 39–55.
- ↑ Redmond, PJ (1964). "Generalization of the Runge-Lenz Vector in the Presence of an Electric Field". Physical Review 133: B1352–B1353.
- ↑ а б Einstein, A (1915). "Erklärung der Perihelbeivegung der Merkur aus der allgemeinen Relativitätstheorie.". Sitzungsberichte der der Königlich Preußischen Akademie der Wissenschaften 47 (2): 831–839.
- ↑ Le Verrier, UJJ (1859). "Sur la théorie de Mercure et sur le mouvement du périhélie de cette planète; Lettre de M. Le Verrier à M. Faye.". Comptes Rendus de l'Academie de Sciences (Paris) 49: 379–383.[1]
- ↑ CM Will General Relativity, an Einstein Century Survey. — SW Hawking and W Israel, eds.. — Cambridge: Cambridge University Press, 1979. — С. Chapter 2.о книге
- ↑ A. Pais Subtle is the Lord: The Science and the Life of Albert Einstein. — Oxford University Press, 1982.о книге
Пайс, Абрахам. (1989) Научная деятельность и жизнь Альберта Эйнштейна. Пер. с англ. В. И. и О. И. Мацарских; Под ред. А. А. Логунова. — М.: Наука, 1989. — 566,[1] с., [4] л. ил., 22 см. — ISBN 5-02-014028-7. - ↑ а б Prince, GE; Eliezer CJ (1981). "On the Lie symmetries of the classical Kepler problem". Journal of Physics A: Mathematical and General 14: 587–596.
- ↑ Lévy-Leblond, JM (1971). "Conservation Laws for Gauge-Invariant Lagrangians in Classical Mechanics". American Journal of Physics 39: 502–506.
- ↑ а б Bander, M; Itzykson C (1966). "Group Theory and the Hydrogen Atom (I)". Reviews of Modern Physics 38: 330–345.
- ↑ Bander, M; Itzykson C (1966). "Group Theory and the Hydrogen Atom (II)". Reviews of Modern Physics 38: 346–358.
- ↑ Rogers, HH (1973). "Symmetry transformations of the classical Kepler problem". Journal of Mathematical Physics 14: 1125–1129.
- ↑ V Guillemin Variations on a Theme by Kepler. — American Mathematical Society Colloquium Publications, volume 42, 1990. — ISBN 0-8218-1042-1о книгеРегулярное выражение «ISBN» классифицировало значение «ISBN0821810421» как недопустимое.
- ↑ Lakshmanan, M; Hasegawa H. "On the canonical equivalence of the Kepler problem in coordinate and momentum spaces". Journal of Physics A 17: L889–L893.
- ↑ PAM Dirac Principles of Quantum Mechanics, 4th revised edition. — Oxford University Press, 1958.о книге
- ↑ Schrödinger, E (1926). "Quantisierung als Eigenwertproblem". Annalen der Physik 384: 361–376.
- ↑ A. Bohm Quantum Mechanics: Foundations and Applications. — 2nd edition. — Springer Verlag, 1986. — С. 208–222.о книге
Дополнительное чтение[править | править код]
- Leach, P.G.L.; G.P. Flessas (2003). "Generalisations of the Laplace-Runge-Lenz vector". J. Nonlinear Math. Phys. 10: 340–423. Статья посвящена обобщению вектора Лапласа—Рунге—Ленца на потенциалы отличные от кулоновского. arxiv.org
Первоисточник этой статьи был признан «избранной статьёй» в русском разделе Википедии