Ретиномоторная реакция фоторецепторов (авторская основного пространства участника Миг)
Ретиномоторная реакция фоторецепторов — механические процессы в сетчатке глаза, связанные с перестройкой взаимного расположения рецепторов (палочек и колбочек), и гранул меланина,
в соответствии с уровнем освещённости (см. рис. 1-2).
Этот процесс, по сравнению со скоростью движения хрусталика, или реакцией глаза на движение, довольно медленный. Скорость адаптации легко оценить по времени, которое требуется нашим глазам для привыкания к резкой смене освещения (например, при переходе из солнечной комнаты — в тёмную, и наоборот, мы временно, на секунды, «слепнем»); но полная световая адаптация занимает 10-30 минут. Такая саморегуляция функций организма — подстройка чувствительности органа зрение к условиям освещённости, связана и с организацией циркадных ритмов [3] и обеспечивает адаптацию глаза к различным условиям окружающей среды, и переход от дневного, цветного зрения — к ночному, более светочувствительному, но монохроматическому. Наиболее ранние, а затем и самые подробные работы по изучению процесса ретиномоторной адаптации были проведены на рыбах. [4]
Регулировка функции и/или положения элементов нервной сети глаза — фоторецепторов сетчатки означает автоматическую настройку их положения при световом раздражении, в соответствии с общей яркостью, интегрированной в поле зрения.[5][6]
Исторический очерк[править | править код]
Ретиномоторная реакция была обнаружена в середине 50-х гг. ХХ века, при исследованиях физиологии и ультраструктуры глаза позвоночных животных в различных условиях освещения.[7], [8]. [9]. В 2006 [10] году при помощи трансмиссионной электронной микроскопии пигментного слоя сетчатки исследован эпителий клеток сетчатки глаза, где вырабатывается пигмент меланин (коричневого и чёрного цвета), который обеспечивает открытие и закрытие зон освещения колбочек и палочек в зависимости от вида освещения. При дневном освещении данный пигмент блокирует работу палочек, которые ко всему ещё уходят в зону под колбочки. И наоборот, при сумеречном освещении палочки выходят из под прикрытия зоны прохождения синих и ультрафиолетовых лучей меланином, а колбочки опускаются в зону ниже палочек и находятся под прикрытием меланина. (См. рис.C). В конечном итоге подтверждено открытие явления ретиномоторной реакции фоторецепторов, работы колбочек и палочек в условиях дневного и ночного освещения учёными Е.О.Загальской и В.П.Гнюбкиной из Института Биологии Моря ДВО РАН, Владивосток.
Всё это окончательно подтвердило открытия учёных в этой области, т.е.:
- 1) При дневном освещении работают только колбочки;
- 2) При сумеречном и ночном освещении работают палочки.
Ретиномоторные движения — морфологические изменения во внешней сетчатке в ответ на изменяющиеся условия освещения. Они могут быть разделены в два компонента:
- Перемещение гранул пигмента в пределах микроворсинок сетчатки глаза (в пигментном эпителии);
- Позиционные изменения формы фоторецепторных клеток. Эти позиционные изменения оптимизируют освещённость колбочек и палочек для дневного и ночного видения.
Цель этого исследования состояла в том, чтобы проанализировать ретиномоторные движения у взрослых рыб (zebrafish) и процесс созревания ретиномоторной реакции, в его развитии у молодняка рыб. Показано, что ретиномоторные движения используются как адаптация зрения в условиях тёмно/светового механизм адаптации у рыбы-зебры. У взрослых особей гранулы меланоцитов RPE мигрируют с постоянной скоростью и достигают полного экранирования палочек приблизительно через 1 час. Приблизительно две трети смещений заканчиваются в течение 5 минут, и полностью заканчиваются в течение 10 — 20 мин. В периоде развития можно выделить три критические стадии созревания ретиномоторной реакции в ответ на свет: через 5 dpf (дней после рождения), когда начинается перемещение гранул пигмента, через 20 dpf, которые уплотняют гранулы пигмента в апикальной части микроворсинок RPE, и через 28 dpf — функциональным созреванием палочек, происходит двойной контракт колбочек как во взрослых сетчатках.
Ретиномоторная реакция является, по-видимому, общим свойством зрительного аппарата как для насекомых[11], так и для позвоночных животных. Особенно активно изучалась ретиномоторная реакция рыб[12]. По данным Наумова и Карташева (1979) у костистых рыб «на свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их»[13],[14].
Вследствие ретиномоторной реакции палочки, отличающиеся от колбочек более высокой светочувствительностью, экранируются пигментными гранулами от излишнего возбуждения светом.
Образование оптического изображения[править | править код]
Образование оптического изображения на сетчатке предусматривает:
- С появлением аберраций и особенно хроматических аберраций (см. рис.3) — способность оптической системы глаза рефлекторно менять кривизну роговицы и хрусталика, а также с устройством (роговицы, хрусталика), имеющих градиент оптической плотности биологических линз — уменьшение плотности к периферии, (изменение показателя преломления), при котором, центры преломления ложатся в оптимальной зоне фокусировки в колбочках (палочках).
- Ретиномоторную реакцию фоторецепторов палочек и колбочек (см. рис.4).
Т.о. мембрана дополнительно способна подстраивается по высоте, создавая дополнительно условия эффективной фототрансдукции света от предметной точки — в мембранный потенциал. При этом, учитывая, что сфокусированный световой луч предметной точки изображения блоком не менее трёх колбочек и каждая колбочка оппонентно выделяет сигнал одного основного монолуча из трёх S,M,L, которые в конусной мембране занимают свое сечение поперечного фронта волны в зоне длины конуса 50мкм, что вопрос хроматической аберрации в данной биологической среде сводится к нулю.
Всё это обеспечивает получение более сильного сигнала от предметной точки, для каждого из сигналов, дошедшего к колбочке — в итоге получение максимальной яркости и резкости оптического изображения в зрительном отделе головного мозга.[15][16]
Микрофибриллы[править | править код]
В цитоплазме клеток имеется большое количество миофибрилл, обеспечивающих сокращение. Миофибриллы состоят из актиновых (тонких) и миозиновых (толстых) микрофибрилл.
Микрофибрилла — микроволоконце или подобная волокну структкра тонких нитей, которые состоят из гликопротеинов и целлюлозы. Это обычно, но не всегда, используется как общий подход в описании структуры волокна белка. Его наиболее часто наблюдаемый структурный образец — 9+2 образца, в которых два центральных protofibrils окружены девятью другими парами. Целлюлоза в заводах - один из примеров составов небелка, которые используют этот срок с той же самой целью. Микроволоконца целлюлозы установлены во внутренней поверхности первичной стены клетки. Поскольку клетка поглощает воду, при её увеличения объема и существующие микроволоконца, отдельные и новые сформированы, чтобы помочь увеличивать силу ячейки.
Актиновая микрофибрилла (тонкая)[править | править код]
Актиновая микрофибрилла (тонкая) представляет собой тонкую нить. Основу актиновой микрофибриллы составляет белок актин, который имеет фибриллярную структуру. На актине есть места для связывания миозина в поперечнополосатой мышечной ткани. К актину присоединены еще несколько белков, образующих тропонин-тропомиозиновый комплекс:
- Тропомиозин - закрывает на молекуле актина места для связывания с миозином;
- Тропонин С - присоединяет ионы кальция; после присоединения кальция сдвигает молекулу тропомиозина с ее первоначального расположения, что приводит к открытию на молекуле актина мест для связывания с миозином;
- Тропонин Т и тропонин I - выполняют структурную функцию.
В гладкой мышечной ткани тропонин-тропомиозинового комплекса нет. Актиновые микрофибриллы прикрепляются к цитоскелету клетки в области Z-линий с помощью специальных белков, таких как альфа-актинин, виментин, десмин.[17].
Миозиновая микрофибрилла (толстая)[править | править код]
Миозиновая микрофибрилла (толстая) представляет собой толстую нить. Построена из молекул миозина, имеется множество типов миозина с разной скоростью расщепления АТФ, что обуславливает отличия в скорости сокращения разных мышечных волокон.
Молекула миозина похожа на клюшку для игры в гольф или хоккей, в ней различают головку (это та часть клюшки, которая ударяет по мячу или шайбе) и (рукоятка клюшки). Миозиновая микрофибрилла представляет собой пучёк таких клюшек, связанных за рукоятки, причем часть головок смотрит в одну сторону, а часть - в другую (передне-заднее направление). Участки миозиновых микрофибрилл, где находятся головки, вставлены между актиновыми микрофибриллами. Миозиновые микрофибриллы прикрепляются к цитоскелету клетки в области линии М (середина полоски Н) головка миозина может:
- 1) поворачиваться,
- 2) прикрепляться к актину,
- 3) расщеплять АТФ, то есть является АТФ-азой.
Головка миозина может присоединяться к актину только тогда, когда она содержит АДФ и Фосфат (продукты распада АТФ). Головка миозина, соединенная с актином, может совершать гребковое движение только в момент, когда от нее отсоединяются АДФ и Фосфат. Головка миозина может отсоединиться от актина только тогда, когда она присоединяет к себе молекулу АТФ в гладкой мышечной ткани. Головка миозина имеет легкие цепи, которые должны сначала фосфорилироваться, для того чтобы она смогла расщеплять и присоединять АТФ и взаимодействовать с актином.[18]
На примере работы миофибрилл мышечных волокон, работа миофибрилл клеток фоторецептров колбочек, палочек в сетчатке глаза отличается их изменением размеров (сокращение или удлинения) тем, что в результате воздействия светового луча (фотонов) происходят морфологические изменения во внешней сетчатке в ответ на изменяющиеся световые условия освещения. Они могут быть разбиты на два компонента:
- Перемещение гранул пигмента в пределах микроворсинок относящегося к сетчатке глаза эпителия пигмента меланина (retinal pigment epithelium — RPE);
- Позиционные изменения в ячейках фоторецептора. Эти позиционные изменения оптимизируют положение колбочек и фоторецепторов палочек для оптимального положения (фокусировки предметных точек) их при создании оптического изображения на фокальной поверхности сетчатки.[19]
Выводы[править | править код]
Из истории развития основ цветного зрения от Ломоносова и кончая последними данными учёных разных лабораторий, начиная от гипотетических заявлений и кончая созданием новых теорий и открытий явлений в цветном видении, принцип трихроматизма оставался и остаётся незыблемым. Особено было важным открытием явления цветного видения в 2011 году явления ретиномоторной реакции фоторецепторов у рыб. Исследуя зрение обиталей воды, учёные получили снимки зрительного процесса, где однозначно видна работа колбочек и палочек в условиях дневного и сумеречного освещения.
Во-первых было доказано, что при дневном освещении работают только колбочки. Основа принципа трихроматима и состоит в том, что дневные лучи света на базе основных лучей RGB оппонентно выделяются колбочками из всего потока пучка лучей предметной точки в виде аналоговых сигналов наиболее ярких основных лучей (RGB), которые посылаются в мозг, где мы начинаеи их видеть в цвете. Т.е колбочки работают с дневными лучами света, начиная с длин волн 498нм. Палочки работают с более сильными лучами (синими, ультрафиолетовыми) до границы 498нм. Т.е. работы лабораторий Р.Е.Марка, Джона А. Медеироса, Джеральда К. Хата по своим отличающимся методиками привели к одному: только колбочки работают при цветном зрении, что доказано в этом исследовании.
В итоге в 2011 году появился результат исследований зрительного процесса, например, рыб, который на снимках (см. рис.1, рис.2) показал работу колбочек и палочек, подтвердив:
- Данные и утверждения учёных разных лабораторий сходятся в одном, что при цветном зрении работают только колбочки;
- Палочки работают только в условиях сумеречного и ночного освещения с границей не более длин волн световых лучей 498нм - синих и ультрафиолетовых.
- Автоматически нелинейная теория зрения С.Ременко оказалась надуманной, нереальной и все приведенные данные, которы привели к результату, что при цветном зрении работают системы "колбочка+палочка", не отражают действительность, т.е. не приемлимы. Вот почему теория С.Ременко не призна в мире уже со времён её объявления. (В энциклопедях, кроме Традиции, её не освещают).
См. также[править | править код]
Примечания[править | править код]
- ↑ http://www.imls.uzh.ch/static/CMS_publications/neuhauss/literatur/pdf06/Hodel_AnatRec_06.pdf
- ↑ http://www.imls.uzh.ch/static/CMS_publications/neuhauss/literatur/pdf06/Hodel_AnatRec_06.pdf
- ↑ Pierce ME, Besharse JC (1985) Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol 86:671-689
- ↑ http://www.molvis.org/molvis/v14/a44 Identification of differentially expressed genes in carp rods and cones Molecular Vision 2008; 14:358-369
- ↑ http://www.ncbi.nlm.nih.gov/pubmed/16721865
- ↑ http://varles.narod.ru/index.html?http://varles.narod.ru/lekzii1/404.htm
- ↑ M. A. Ali THE OCULAR STRUCTURE, RETINOMOTOR AND PHOTO-BEHAVIORAL RESPONSES OF JUVENILE PACIFIC SALMON Can. J. Zool. 37(6): 965—996 (1959)
- ↑ http://jgp.rupress.org/content/86/5/671.full.pdf Circadian Regulation of Retinomotor Movements/ I. Interaction of Melatonin and Dopamine in the Control of Cone Length //THE JOURNAL OF GENERAL PHYSIOLOGY V. 86 November 1, 1985
- ↑ Kawamura, G. Retinomotor movement of all spectral cone types of red sea bream Pagrus major in response to monochromatic stimuli and UV sensitivity //Fisheries Science. Apr 1997
- ↑ http://eps.dvo.ru/bm/2006/1/pdf/bm-055-059.pdf
- ↑ В. П. Тыщенко ФИЗИОЛОГИЯ НАСЕКОМЫХ М., «ВЫСШАЯ ШКОЛА» 1986, с. 223
- ↑ Загальская, Е. О. Морфологические особенности ретиномоторной реакции у молоди симы (oncorhynchus masou) в магнитном поле и красном свете / Е. О. Загальская, В. П. Гнюбкина, А. А. Максимович // Морфология : научно-теоретический медицинский журнал. — 2004. — Том 126,N 6 . — С. 32-36.
- ↑ http://zoometod.com/ixt/ixtiolog_63.html Анисимова И. М., Лавровский В. В. Ихтиология
- ↑ http://clck.yandex.ru/redir/AiuY0DBWFJ4ePaEse6rgeAjgs2pI3DW99KUdgowt9Xt0dmymRAsAFAC41YGK3IYaGvvsyeXdZeHQNpszBsrsqZIe04jRS7Q_-UGVS_eXc43ES6DTijTRmmmHQAhjEN6B9_b0UYDggTd1O0pMdSGPHLJk-QS9esTl7vOPp-wBR0SDO7MxYWW-sQ?data=UlNrNmk5WktYejR0eWJFYk1LdmtxdmdzQ3hIMGVkazluRW9jUlZqeVhkSzNNMXM0amVVYTBXR2h3dFFKZ2xMWDhNY3p5NS1iUUV5aGhjdWlpNFI2OGpRTmlRNEV1ekw5LWpxRm1mYldzWUt2c3VHR1dQVmJYOUlpaVlGUnRmVXdwaGhFaU5ycjIzNA&b64e=2&sign=032480085342e016d3fecd85afeb18ec&keyno=8&l10n=ru&mc=4017&w=862&h=399 Е. О. Загальская, В. П. Гнюбкина. Ультраструктура пигментного эпителия сетчатки глаз молоди симы Oncorhynchus Masou. Биология моря, 2006, том 32, № 1, с. 55-59
- ↑ http://www.ncbi.nlm.nih.gov/pubmed/16721865
- ↑ http://bse.sci-lib.com/article115992.html
- ↑ http://aorta.ru/hystoslogos/440005.shtml
- ↑ http://aorta.ru/hystoslogos/440005.shtml
- ↑ http://www.ncbi.nlm.nih.gov/pubmed/16721865
Литература[править | править код]
- Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, «Мир» , 1985
- Гл. Ред. Б. В. Петровский. Популярная медицинская энциклопедия, ст. «Зрение», «Цветовое зрение», «Советская энциклопедия» , 1988
- В. Г. Елисеев, Ю. И. Афанасьев, Н. А. Юрина. Гистология, «Медицина» , 1983