Натуральное число
Натура́льные чи́сла — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).
Существуют два подхода к определению натуральных чисел — числа, используемые при :
- перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России).
- обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.
Отрицательные и нецелые числа — натуральными числами не являются.
Множество всех натуральных чисел принято обозначать знаком .
Существует бесконечное множество натуральных чисел — для любого натурального числа найдется другое натуральное число, большее его.
Определение[править | править код]
Аксиомы Пеано[править | править код]
Введём функцию , которая сопоставляет числу следующее за ним число.
- ( является натуральным числом);
- Если , то (Число, следующее за натуральным, также является натуральным);
- (1 не следует ни за каким натуральным числом);
- Если и , тогда (если натуральное число непосредственно следует как за числом , так и за числом , то );
- Аксиома индукции. Пусть — некоторый одноместный предикат, зависящий от параметра — натурального числа . Тогда:
- если и , то
- (Если некоторое высказывание верно для (база индукции) и для любого при допущении, что верно , верно и (индукционное предположение), то верно для любых натуральных ).
Теоретико-множественное определение[править | править код]
Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.
Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:
Числа, заданные таким образом, называются ординальными.
Первые несколько ординальных чисел и соответствующие им натуральные числа:
Классы эквивалентности этих множеств относительно биекций также обозначают 0, 1, 2, ….
Замечание[править | править код]
Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах заменяют на . В этом случае ноль считается натуральным числом.
В русской литературе обычно ноль исключен из числа натуральных чисел , а множество натуральных чисел с нулем обозначается как .
Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как .
Операции над натуральными числами[править | править код]
К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:
- Сложение. Cлагаемое + Слагаемое = Сумма
- Умножение. Множитель * Множитель = Произведение
- Возведение в степень , где a — основание степени и b — показатель степени. Если основание и показатель натуральны, то и результат будет являться натуральным числом.
Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).
- Вычитание. Уменьшаемое Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
- Деление. Делимое / Делитель = (Частное, Остаток). Частное и остаток от деления на определяются так: , причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе можно представить в виде , то есть можно было бы считать частным , а остатком = .
Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.
Теоретико-множественные определения[править | править код]
Воспользуемся определением натуральных чисел как классов эквивалентности конечных множеств. Будем обозначать класс эквивалентности множества A относительно биекций как [A]. Тогда основные арифметические операции определяются следующим образом:
где — дизъюнктное объединение множеств, — прямое произведение, — множество отображений из B в A. Можно показать, что полученные операции на классах введены корректно, то есть не зависят от выбора элементов классов, и совпадают с индуктивными определениями.
Основные свойства[править | править код]
- Коммутативность сложения.
- Коммутативность умножения.
- Ассоциативность сложения.
- Ассоциативность умножения.
- Дистрибутивность умножения относительно сложения.
Алгебраическая структура[править | править код]
Сложение превращает множество натуральных чисел в полугруппу с единицей, роль единицы выполняет 0. Умножение также превращает множество натуральных чисел в полугруппу с единицей, при этом единичным элементом является 1. С помощью замыкания относительно операций сложения-вычитания и умножения-деления получаются группы целых чисел и рациональных положительных чисел соответсвенно.
Натуральные числа в русском языке[править | править код]
- Числа от 1 до 10 — один (1), два (2), три (3), четы́ре (4), пять (5), шесть (6), семь (7), во́семь (8), де́вять (9), де́сять (10).
- Числа от 11 до 20 — оди́ннадцать (11), двена́дцать (12), трина́дцать (13), четы́рнадцать (14), пятна́дцать (15), шестна́дцать (16), семна́дцать (17), восемна́дцать (18), девятна́дцать (19), два́дцать (20).
- Числа от 30 до 90 — три́дцать (30), со́рок (40), пятьдеся́т (50), шестьдеся́т (60), се́мьдесят (70), во́семьдесят (80), девяно́сто (90).
- Числа от 100 до 900 — сто (100), две́сти (200), три́ста (300), четы́реста (400), пятьсо́т (500), шестьсо́т (600), семьсо́т(700), восемьсо́т (800), девятьсо́т (900).
См. также[править | править код]
Ссылки[править | править код]
- http://Lib.Mexmat.Ru — «Поиск книг по теме»
- http://web.archive.org/web/20070207023627/http://www.sgu.ru/ie/mehmat/matin/R1-1.htm
натуральные | целые | рациональные | алгебраические | вещественные | комплексные | кватернионы | числа Кэли
иррациональные | трансцендентные |