Соленоид

Материал из свободной русской энциклопедии «Традиция»
Перейти к: навигация, поиск
Классическая электродинамика
Solenoid.svg
Магнитное поле соленоида
Электричество · Магнетизм
Рис. 1. Соленоид с однослойной намоткой.
Образование магнитного потока в соленоиде. В центре по длине на оси соленоида магнитное поле практически однородно.
Схема магнитных и вихревых электрических полей в соленоиде при протекании по обмотке переменного тока.
Рис.2. Картина силовых линий магнитного поля, создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

Солено́ид — (греч. solen — канал, и eidos — подобный) разновиднось катушки индуктивности. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, длина которого значительно больше диаметра, магнитное поле направлено параллельно оси соленоида и однородно, причём его напряжённость пропорциональна силе тока и (приближённо) числу витков. Внешнее магнитное поле соленоида подобно полю стержневого магнита (см. рис.2).[1]

Конструктивно длинные соленоиды выполняются в виде однослойной намотки (см. рис. рис.1), так и многослойной.

Если длина намотки значительно превышает её диаметр, то в полости соленоида при подаче в него электрического тока создаётся магнитное поле, близкое к однородному.

Также часто соленоидами называют электромеханические устройствами, исполнительными механизмами, обычно со втягиваемым ферромагнитным сердечником. В таком применении соленоид почти всегда снабжается внешним ферромагнитным магнитопроводом, обычно называемым ярмом.

Соленоид на постоянном токе[править]

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно[2]

\(B = \mu_0 n I\!\) (СИ (система единиц)),

\(B = \frac{4\pi}{c} n I\) (СГС),

где \(\mu_0 \) — магнитная проницаемость вакуума, \(n=N/l\) — число витков на единицу длины соленоида, \(N\) — число витков, \(l\) — длина соленоида, \(I\) — ток в обмотке.

Вследствие того, что две половины бесконечного соленоида в точке их соединения вносят одинаковый вклад в магнитное поле, магнитная индукция полубесконечного соленоида у его края вдвое меньше, чем в объёме. То же самое можно сказать о поле на краях конечного, но достаточно длинного соленоида[2]:

\(B_\mathrm{KP} = \frac {1}{2} \mu_0 n I\!\) (СИ (система единиц)).

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока \(I~\). Величина этой энергии равна $$ E_\mathrm{coxp} = {{\Psi I} \over 2} = {{L I^2} \over 2},$$ где \(\Psi = N \Phi\) — потокосцепление, \(\Phi\) — магнитный поток в соленоиде, \(L\) — индуктивность соленоида.

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой $$ \varepsilon = -L{dI \over dt}.$$

Индуктивность соленоида[править]

Индуктивность соленоида выражается следующим образом: $$L = \mu_0 n^2 V\! = \frac{\mu_0}{4\pi}\frac{z^2}{l}$$(СИ (система единиц)), $$L = 4\pi n^2 V\! = \frac{z^2}{l}$$(СГС),

где \(\mu_0 \) — магнитная проницаемость вакуума, \(n=N/l\) — число витков на единицу длины соленоида, \(N\) — число витков, \(V=Sl\) — объём соленоида, \(z=\pi dN\) — длина проводника, намотанного на соленоид, \(S=\pi d^2/4\) — площадь поперечного сечения соленоида, \(l\) — длина соленоида, \(d\) — диаметр витка.

Без использования магнитного материала магнитная индукция \(B\) в пределах соленоида является фактически постоянной и равна $$B = \mu_0 \frac{N}{l} I = \mu_0 n I,$$ где \(I\) — сила тока. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление \(\Psi\) через катушку равно магнитной индукции \(B\), умноженной на площадь поперечного сечения \(S\) и число витков \(N\): $$\displaystyle \Psi = BSN = \mu_0N^2IS/l = \mu_0n^2VI = LI.$$ Отсюда следует формула для индуктивности соленоида $$\displaystyle L = \mu_0N^2S/l = \mu_0 n^2 V,$$эквивалентная предыдущим двум формулам.

Соленоид на переменном токе[править]

При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

Применение[править]

Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.

Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч. Один из самых известных примеров — «тяговое реле» автомобильного стартёра.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

Примечание[править]

  1. http://www.big-soviet.ru/627/74411/%D0%A1%D0%BE%D0%BB%D0%B5%D0%BD%D0%BE%D0%B8%D0%B4 (БСЭ)
  2. а б Савельев И.В. (1982), с. 148–152.

См. также[править]