Электродинамика
Электродина́мика — раздел физики, изучающий электромагнитное излучение, свойства электромагнитного поля и его взаимодействие с электрическими зарядами, связь электрических и магнитных явлений, электрический ток.
Свойства электрического поля и зарядов описывает другой раздел физики — электростатика, существует также понятие в физике магнитостатика.
Электродинамика лежит в основе техники: радиотехники, электротехники, различных отраслей связи и радио.
Под термином электродинамика по умолчанию понимается классическая злектродинамика (не затрагивающая квантовых эффектов) и квантовая электродинамика (для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами).[1]
Классическая и квантовая электродинамика[править | править код]
Джеймс Клерк Максвелл | |
James Clerk Maxwell | |
![]() | |
Дата рождения: | 13 июня 1831 |
Место рождения: | Кембридж, Англия |
Дата смерти: | 5 ноября 1879 |
Место смерти: | Лондон (Англия) |
В запросе есть пустое условие. | |
Научная сфера: | физика, математика, механика |
Основным содержанием классической электродинамики является описание свойств электромагнитного поля и его взаимодействия с заряженными телами (заряженные тела "порождают" электромагнитное поле, являются его "источниками", а электромагнитное поле в свою очередь действует на заряженные тела, создавая электромагнитные силы). Это описание, кроме определения основных объектов и величин, таких как электрический заряд, электрическое поле, магнитное поле, электромагнитный потенциал, сводится к уравнениям Максвелла в той или иной форме и формуле силы Лоренца, а также затрагивает некоторые смежные вопросы (относящиеся к математической физике, приложениям, вспомогательным величинам и вспомогательным формулам, важным для приложений, как например вектор плотности тока или эмпирический закона Ома). Также это описание включает вопросы сохранения и переноса энергии, импульса, момента импульса электромагнитным полем, включая формулы для плотности энергии, вектора Пойнтинга и т.п.
Иногда под электродинамическими эффектами (в противоположность электростатике) понимают те существенные отличия общего случая поведения электромагнитного поля (например, динамическую взаимосвязь между меняющимися электрическим и магнитным полем) от статического случая, которые делают частный статический случай гораздо более простым для описания, понимания и расчетов.
Свойства статического (не меняющегося со временем или меняющегося медленно, чтобы «электродинамическими эффектами» в описанном выше смысле можно было пренебречь) электрического поля и его взаимодействия с электрически заряженными телами (электрическими зарядами) описывает отдельный раздел физики — электростатика, являющийся частным разделом электродинамики, но имеющий самостоятельное значение из-за сильного упрощения всех расчётов в этом случае.
Еще частным случаем электродинамики является магнитостатика, исследующая постоянные токи и постоянные магнитные поля (поля не меняются во времени или меняются настолько медленно, что быстротой этих изменений в расчете можно пренебречь).
Электродинамика лежит в основе физической оптики, физики распространения радиоволн, а также пронизывает практически всю физику, так как почти во всех разделах физики приходится иметь дело с электрическими полями и зарядами, а часто и с их нетривиальными быстрыми изменениями и движениями. Кроме того, электродинамика является образцовой физической теорией (и в классическом и в квантовом своем варианте), сочетающей большую точность расчетов и предсказаний с влиянием теоретических идей, родившихся в ее области, на другие области теоретической физики.
В целом электродинамика является основной базовой наукой в технике в областях: радиотехники, электротехники, связи, телевидения, радио и связи.
История[править | править код]
В 1832 году английский физик Майкл Фарадей теоретически предсказал cуществование электромагнитного излучения.
В 1864 году Дж. К. Максвелл опубликовал первые из основных уравнений «классической электродинамики», описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами.