Пи (число)
Список чисел | |
---|---|
Иррациональные числа не указано название статьи — не указано название статьи — не указано название статьи — не указано название статьи — φ — α — e — π — δ — τ | |
Система счисления | Оценка числа |
Двоичная | 11,00100100001111111… |
Десятичная | 3,141592653589793238462… |
Шестнадцатеричная | 3,243F6A8885A308D31319… |
Рациональное приближение | 22⁄7,223⁄71, 355⁄113 …
(в порядке увеличения точности) |
Цепная дробь | [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1,... ]
(Цепная дробь не периодическая. Дана в линейной нотации) |
Евклидова геометрия |
Пи (число) —
Впервые обозначением этого числа греческой буквой
История[править | править код]
История числа
Геометрический период[править | править код]
То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Индийский текст «Шатапатха Брахмана» даёт
Архимед, возможно, первым предложил математический способ вычисления
В Индии Арьябхата и Бхаскара использовали приближение 3,1416. Брахмагупта предложил в качестве приближения
Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления
Позднее Лю Хуэй придумал быстрый метод вычисления
В 480-х годах китайский математик Цзу Чунчжи (англ. Zu Chongzhi) продемонстрировал, что
Классический период[править | править код]
До 2-го тысячелетия было известно не более 10 цифр
Этот результат известен как ряд Мадхавы-Лейбница (англ. Leibniz formula for pi) или ряд Грегори-Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). К сожалению, этот ряд сходится к
Мадхава (англ. Madhava of Sangamagrama) смог вычислить
Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Лудольфа ван Цейлена (1540—1610), затратившего десять лет на вычисление числа
Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета (англ. Viète's formula)
найденная Франсуа Виетом в 1593 году. Другим известным результатом стала Формула Валлиса[убрать шаблон],
выведенная Джоном Валлисом в 1655 году.
В Новое время для вычисления
Первую эффективную формулу нашёл в 1706 году Джон Мэчин (John Machin):
Разложив арктангенс в ряд Тейлора
Формулы такого типа, в настоящее время известные как Формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления
Теоретические достижения в XVIII веке привели к постижению природы числа
которое составляет
Считается, что книга Уильяма Джонса Новое введение в математику c 1706 года первая ввела в использование греческую букву
|
Эра компьютерных вычислений[править | править код]
Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и др. использовали в 1949 году ЭНИАК для вычисления 2037 цифр
В начале 20-го столетия индийский математик Сриниваса Рамануджан обнаружил множество новых формул для
и похожая на неё, найденная не указано название статьи в 1987,
который вычисляет по 14 цифр за ход. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении
В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда не указано название статьи и не указано название статьи независимо друг от друга открыли не указано название статьи, который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[2] Алгоритм состоит из установки начальных значений
и итераций:
пока an и bn не станут достаточно близки. Тогда оценка
При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (Jonathan Borwein) и Питером Боруэйном (en:Peter Borwein).[3] При помощи этих методов Ясумаса Канада (en:Yasumasa Kanada) и его группа, начиная с 1980 года, установили большинство рекордов вычисления
Важным развитием недавнего времени стала формула Бэйли—Боруэйна—Плаффа (en:Bailey–Borwein–Plouffe formula) (формула ББП), открытая Саймоном Плаффом (en:Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована — David H. Bailey, Peter Borwein, and Plouffe.[4] Эта формула,
примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа
В 2006 году Саймон Плафф, используя en:integer relation algorithm PSLQ, нашёл ряд красивых формул.[6] Пусть q = eπ, тогда
и другие вида
где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:
для рационального p у которго знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.
В 2009 году учёные из Университета Цукубо (Япония) рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[7]
Оценки[править | править код]
(Архимед), (дана в книге индийского мыслителя и астронома Арьябхаты в V веке н. э.), (оценка приписывается современнику Арьябхаты древнекитайскому астроному Цзу Чун-цжи). (приближение дал великий индийский математик С.Рамануджан)- 510 знаков после запятой:
- π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…
- Двести миллиардов знаков после запятой (2000 ZIP архивов, средний размер файла около 57 мегабайт)
Свойства[править | править код]
Соотношения[править | править код]
Известно много формул с числом
- Формула Валлиса:
- Модифицированная формула Валлиса:
- Произведения:
- Тождество Эйлера:
- Интегральный косинус
- Интегральный тангенс
- Интегральный котангенс
- Интегральный арктангенс
Трансцендентность и иррациональность[править | править код]
- Иррациональность числа
была впервые доказана Иоганном Ламбертом в 1767 году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и . - В 1882 годe профессору Кёнигсбергского, а позже Мюнхенского университета Фердинанду Линдеману удалось доказать трансцендентность числа
. Доказательство упростил Феликс Клейн в 1894 году[8]- Поскольку в геометрии Евклида площадь круга и длина окружности являются функциями числа
, то доказательство трансцендентности положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.
- Поскольку в геометрии Евклида площадь круга и длина окружности являются функциями числа
Нерешённые проблемы[править | править код]
- Неизвестно, являются ли числа
и алгебраически независимыми. - Неизвестно, являются ли числа
, , , , , , трансцендентными. - До сих пор ничего не известно о нормальности числа
; неизвестно даже, какие из цифр 0—9 встречаются в десятичном представлении числа бесконечное количество раз.
История вычисления[править | править код]
В 1997 году Дэйвид Х. Бэйли, Питер Боруэйн и Саймон Плуфф открыли способ быстрого вычисления произвольной двоичной цифры числа
Метод иглы Бюффона[править | править код]
На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к
Дополнительные факты[править | править код]
- Неофициальный праздник «День числа Пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3.14, что соответствует приближённому значению числа
. - Ещё одной датой, связанной с числом
, является 22 июля, которое называется «Днём приближённого числа Пи» (англ. Pi Approximation Day), так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа . - 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук установил мировой рекорд, запомнив 30 миллионов знаков числа Пи, которые были напечатаны в 20 томах текста.[10] С установлением нового рекорда Андрея Слюсарчука официально поздравил Президент Украины Виктор Андреевич Ющенко.[11] [12] Поскольку устное перечисление 30 млн цифр
со скоростью одна цифра в секунду заняло бы почти год (347 дней) при непрерывном перечислении 24 часа в сутки, 7 дней в неделю, то был применён следующий подход для проверки рекорда: во время демонстраций г. Слюсарчука просят назвать произвольно выбранные проверяющими последовательности цифр числа Пи, расположенные на произвольно выбранных местах произвольных страниц 20-томной распечатки, группированной в упорядоченные таблицы. Он многократно успешно проходит этот тест. Свидетелями демонстраций были уважаемые учёные, доктора и кандидаты наук, заведующие кафедрами Институтов и Университетов. Книга рекордов Украины перечисляет членов комиссии, участвовавших в демонстрациях. Приведены их научные звания и занимаемые должности. Уникальная память Андрея Слюсарчука основана на эйдетическом восприятии информации. - По данным Книги рекордов Украины, в 2006 году Андрей Слюсарчук установил предыдущий мировой рекорд, запомнив 1 миллион знаков числа Пи. [13]
- Предыдущий мировой рекорд по запоминанию знаков числа
принадлежит японцу Акире Харагути (Akira Haraguchi). Он запомнил число до 100-тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком. (на запоминание ушло 10 лет)[14] - В штате Индиана (США) в 1897 году был выпущен билль (см.: en:Indiana Pi Bill), законодательно устанавливающий значение числа Пи равным 3,2.[15] Данный билль не стал законом благодаря своевременному вмешательству профессора Университета Пердью (англ. Purdue University), присутствовавшего в законодательном собрании штата во время рассмотрения данного закона.
- «число Пи для гренландских китов равно 3.14» написано в «Справочнике китобоя» 60-х годов выпуска.[16]
- Существует художественный фильм, названный в честь числа Пи.
- Существует альбом французской поп-группы Rockets с названием P=3,14
См. также[править | править код]
Примечания[править | править код]
- ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем
. - ↑ Brent, Richard (1975), Traub, J F (ed.), "Multiple-precision zero-finding methods and the complexity of elementary function evaluation", Analytic Computational Complexity, New York: Academic Press, pp. 151–176, Дата обращения: 8 сентября 2007
- ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713.
- ↑ Перейти обратно: а б Bailey, David H., Borwein, Peter B., and Plouffe, Simon (April 1997). "On the Rapid Computation of Various Polylogarithmic Constants" (PDF). Mathematics of Computation 66 (218): 903–913. DOI:10.1090/S0025-5718-97-00856-9.
- ↑ Bellard, Fabrice. "A new formula to compute the nth binary digit of pi". Архивировано 9 марта 2007. Дата обращения: 27 октября 2007.
- ↑ Plouffe, Simon. "Indentities inspired by Ramanujan's Notebooks (part 2)" (PDF). Дата обращения: 2009-4-10.
{{cite web}}
: Проверьте значение даты:|accessdate=
(справка)К:Википедия:Ошибки CS1 (даты) - ↑ Установлен новый рекорд точности вычисления числа π
- ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году
- ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
- ↑ Профессор Андрей Слюсарчук установил мировой рекорд по возможностям человеческой памяти http://www.mk.ru/health/303812.html?phrase_id=1446233
- ↑ Президент поздравил профессора Андрея Слюсарчука с установлением нового мирового рекорда по запоминанию и воспроизведению человеком сверхбольшого объема информации http://www.president.gov.ua/ru/news/14234.html
- ↑ Ющенко привітав Слюсарчука зі світовим рекордом із запам’ятовування надвеликого обсягу інформації http://news.liga.net/ukr/news/NU094415.html
- ↑ Книга рекордов Украины http://www.book.adamant.ua/akt/2slysar4uk/1.htm
- ↑ "Japanese man recites pi from memory to 100,000 decimal places, claims world record". The Associated Press. 04/10/06. Архивировано 2013-01-03. Дата обращения: 22 сентября 2008.
{{cite web}}
: Проверьте значение даты:|date=
(справка)К:Википедия:Ошибки CS1 (даты) - ↑ The Indiana Pi Bill, 1897
- ↑ В. И. Арнольд любит приводить этот факт, см. например здесь (ps)
Литература[править | править код]
- Жуков А. В. О числе π М.: МЦМНО, 2002. 32 с. ISBN 5-94057-030-5
- Перельман Я. И. Квадратура круга. Л.: Дом занимательной науки, 1941. Текст в формате djv/zip.
Ссылки[править | править код]
- 200 миллиардов знаков числа ПИ
- Различные формулы для вычисления числа ПИ
- Различные представления числа Пи на WolframAlpha
- Представления числа Пи через произведения
- Зона ПИ на «Арбузе»
- Поиск-online различных числовых последовательностей, среди первых 200 000 000 знаков числа Пи
- Клуб числа Пи
- 100 000 знаков числа ПИ
- 100 миллиардов знаков числа ПИ